Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T14:26:06.380Z Has data issue: false hasContentIssue false

Conductance switching behavior of GeTe/Sb2Te3 superlattice upon hot-electron injection: a scanning probe microscopy study

Published online by Cambridge University Press:  19 February 2016

Leonid Bolotov*
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan. CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
Yuta Saito
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan. CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
Tetsuya Tada
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan. CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
Junji Tominaga
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan. CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
Get access

Abstract

Topological (GeTe)/(Sb2Te3) superlattices (SL) are of practical interest for memory applications because of different mechanism of electric conductance switching in the crystalline phase. In the work, electrical switching behavior of individual SL grains was examined employing a multimode scanning probe microscope (MSPM) in a lithography mode at room temperature. Using programmed bias voltage with different amplitude and pulse duration, we observed the position-dependent variations of the switching voltage and the current injection delay for [(GeTe)2 (Sb2Te3)]4 SLs on Si(100). The results shed a light on the role of electric field and hot-electron injection on the SL conductance switching.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tominaga, J., Kolobov, A.V., Fons, P., Nakano, T., and Murakami, S., Adv. Mater. Interfaces 1, 1300027 (2011).Google Scholar
Tominaga, J., Kolobov, A. V., Fons, P. J., Wang, X., Saito, Y., Nakano, T., Hase, M., Murakami, S., Herfort, J., and Takagaki, Y., Sci. Technol. Adv. Mater. 16, 014402 (2015).Google Scholar
Simpson, R. E., Fons, P., Kolobov, A. V., Fukaya, T., Krbal, M., Yagi, T. and Tominaga, J., Nature Nanotechnology 6, 501 (2011).Google Scholar
Martin, L. W., Crane, S P, Chu, Y-H, Holcomb, M B, Gajek, M, Huijben, M, Yang, C-H, Balke, N and Ramesh, R, J. Phys.: Condens. Matter 20, 434220 (2008).Google Scholar
Yang, J.J., Borghetti, J., Murphy, D., Stewart, D.R., and Williams, R.S., Adv. Mater. 21, 3754 (2009).Google Scholar
Tominaga, J., Simpson, R. E., Fons, P., and Kolobov, A. V., Appl. Phys. Lett. 99, 152105 (2011).Google Scholar
Bang, D., Awano, H., Tominaga, J., Kolobov, A.V., Fons, P., Saito, Y., Makino, K., Nakano, T., Hase, M, Takagaki, Y., Giussani, A., Calarco, R., and Murakami, S., Sci. Rep. 4, 5727 (2014).Google Scholar
Tominaga, J., Kolobov, A., Fons, P.J., Wang, X., Saito, Y., Nakano, T., Hase, M., Murakami, S., Herfort, J., and Takagaki, Y., Sci. Technol. Adv. Mater. 16, 014402 (2015).Google Scholar
Wuttig, M. and Yamada, N., Nature Mater. 6, 824 (2007).CrossRefGoogle Scholar
Ielmini, D., and Lacaita, A.L., Mater. Today 14, 600 (2011).Google Scholar
Yu, X. and Robertson, J., Sci Rep. 5, 12612 (2015).Google Scholar
Ohyanagi, T., Kitamura, M., Araidai, M., Kato, S., Takaura, N. and Shiraishi, K., Appl. Phys. Lett. 104, 252106 (2014).Google Scholar
Egami, T., Johguchi, K., Yamazaki, S. and Takeuchi, K., Jpn. J. Appl. Phys. 53, 04ED02 (2014).Google Scholar
Ohyanagi, T., Takaura, N., Kitamura, M., Tai, M., Kinoshita, M., Akita, K., Morikawa, T. and Tominaga, J., Jpn. J. Appl. Phys. 52, 05FF01 (2013).Google Scholar
Arai, T., Tomitori, M., in Noncontact Atomic Force Microscopy, ed.: Morita, S., Wiesendanger, R., Meyer, E. (Springer-Verlag Berlin, 2002), Ch.4, p.79.Google Scholar
Zhang, L.; Sakai, T., Sakuma, N., Ono, T., Nakayama, K.; Sakuma, N.; Ono, T.; Nakayama, K., Appl. Phys. Lett. 75, 3527 (1999).Google Scholar
Garcia, R., Knoll, A.W., Riedo, E., Nature Nanotechnolog 9, 577 (2014).Google Scholar
Pingue, P., in Tip-Based Nanofabrication: Fundamentals and Applications, ed.: Tseng, A.A. (Springer-Verlag, New York, 2011) Ch.6, p.357.Google Scholar
Bolotov, L., Tada, T., Iitake, T., Nishizawa, M., and Kanayama, T., Jpn. J. Appl. Phys. 50, 04DA04 (2011).Google Scholar
Bolotov, L., Fukuda, K., Arimoto, H., Tada, T., and Kanayama, T., Jpn. J. Appl. Phys. 52, 04CA04 (2013).CrossRefGoogle Scholar
Saito, Y., Fons, P., Kolobov, A.V., and Tominaga, J., Phys. Status Solidi B 252, 2151 (2015).Google Scholar
Heike, S. and Hashizume, T.: Appl. Phys. Lett. 83, 3620 (2003).Google Scholar
An, T., Nishio, T., Eguchi, T., Ono, M., Nomura, A., Akiyama, K., and Hasegawa, Y.: Rev. Sci. Instrum. 79, 033703 (2008).Google Scholar
Saraf, S., Markovich, M., Vincent, T., Rechter, R., and Rothschild, A., Appl. Phys. Lett. 102, 022902 (2013).Google Scholar
Usui, S., Nakajima, T., Hashizume, Y., and Okamura, S., Appl. Phys. Lett. 105, 162911 (2014)Google Scholar
Momand, J., Wang, R., Boschker, J. E., Verheijen, M.A., Calarco, R., Kooi, B.J., Nanoscale (2015) DOI: 10.1039/c5nr04530dGoogle Scholar