Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T14:02:38.863Z Has data issue: false hasContentIssue false

Graphene Films Prepared Using Energetic Physical Vapor Deposition

Published online by Cambridge University Press:  26 January 2017

Daniel T. Oldfield*
Affiliation:
Physics, School Sciences, RMIT University, Melbourne, Victoria3000, Australia CSIRO Materials Science and Engineering, Bayview Ave, Clayton, Victoria3168, Australia
Chi P. Huynh
Affiliation:
Department of Materials Engineering, Monash University, Clayton, Victoria3800, Australia
Stephen C. Hawkins
Affiliation:
Department of Materials Engineering, Monash University, Clayton, Victoria3800, Australia School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast BT9 5AH, United Kingdom
Dougal G. McCulloch
Affiliation:
Physics, School Sciences, RMIT University, Melbourne, Victoria3000, Australia
Get access

Abstract

Carbon films were energetically deposited onto copper foil using the physical vapor deposition technique filtered cathodic vacuum arc. Raman spectroscopy and x-ray absorption spectroscopy showed that high quality graphene films of uniform thickness can be deposited onto copper foil at temperatures of 850 °C. The films can be prepared at high deposition rates (∼1 nm/min) and were comparable to graphene films grown at 1050 °C using chemical vapor deposition. This lower growth temperature was made possible by the energetic carbon flux which assisted the arrangement of carbon atoms into graphene layers on the Cu growth surface. Floating substrate potential was found to produce the highest quality graphene and the addition of hydrogen gas during film growth resulted in more defective films.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsovet, A.A., Science, 306(5696), 666669 (2004).CrossRefGoogle Scholar
Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L., Kim, P., Phys. Rev. Lett., 101(09), 096802 (2008).CrossRefGoogle Scholar
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T. J., Stauber, T., Peres, N.M.R., Geim, A. K., Science, 320(5881), 1308–1308 (2008).Google Scholar
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N., Nano Lett., 8(3), 902907 (2008).CrossRefGoogle Scholar
Cravotto, G., Cintas, P., Che. Eur. J., 16(18), 52465259 (2010).CrossRefGoogle Scholar
Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T., Nat. Mater., 8(3), 203207 (2009).CrossRefGoogle Scholar
Stankovicha, S., Dikina, D.A., Pinera, R.D., Kohlhaasa, K.A., Kleinhammesc, A., Jiac, Y., Wuc, Y., Nguyenb, S.T., Ruoff, R.S., Carbon, 45(7), 15581565 (2007).CrossRefGoogle Scholar
Wei, D., Wu, B., Guo, Y., Yu, G., Liu, Y., Acc. Chem. Res., 46(1), 106115 (2012).CrossRefGoogle Scholar
Malesevic, A., Vitchev, R., Schouteden, K., Volodin, A., Zhang, L., Tendeloo, G.V., Vanhulsel, A., Haesendonck, C.V., Nanotechnology, 19(30), 305604, (2008).CrossRefGoogle Scholar
Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., Kim, K., Nature, 490(7419), 192200 (2012).CrossRefGoogle Scholar
Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., Smirnov, S., Acs Nano, 5(7), 60696076 (2011).CrossRefGoogle Scholar
Lau, D.W.M., Moafi, A., Taylora, M.B., Partridge, J.G., McCulloch, D.G., Powles, R.C., McKenzie, D.R., Carbon, 47(14), 32633270 (2009).CrossRefGoogle Scholar
Baraton, L., He, Z., Lee, C.S., Maurice, J., Cojocaru, C.S., Gourgues-Lorenzon, A., Lee, Y.H., Pribat, D., Nanotechnology, 22(8), 085601 (2011).CrossRefGoogle Scholar
Oldfielda, D.T., McCulloch, D.G., Huynh, C.P., Sears, K., Hawkins, S.C., Carbon, 94, 378385 (2015).CrossRefGoogle Scholar
Anders, A., in Cathodic arcs: from fractal spots to energetic condensation, (Springer Science & Business Media, New York, 2008) p 429490.CrossRefGoogle Scholar
Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H., Silva, S.R.P., J. Appl. Phys., 80(1) 440447 (1996).CrossRefGoogle Scholar
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., Geim, A. K., Phys. Rev. lett., 97(18), 187401 (2006).CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S., Science, 324(5932), 13121314 (2009).CrossRefGoogle Scholar
Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., Smirnov, S., Acs Nano, 5(7), 60696076 (2011).CrossRefGoogle Scholar
Stöhr, J., in NEXAFS Spectroscopy, (Springer-Verlag, New York, 1992) p 276290.CrossRefGoogle Scholar