Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T04:59:54.244Z Has data issue: false hasContentIssue false

Low Temperature Photoluminescence Spectroscopy of Defect and Interband Transitions in CdSexTe1-x Thin Films

Published online by Cambridge University Press:  17 July 2018

Niraj Shrestha*
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA 43606
Corey R. Grice
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA 43606
Ebin Bastola
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA 43606
Geethika K. Liyanage
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA 43606
Adam B. Phillips
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA 43606
Michael J. Heben
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA 43606
Yanfa Yan
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA 43606
Randy J. Ellingson
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA 43606
Get access

Abstract

We present the defect analysis by photoluminescence (PL) spectroscopy of CdSexTe1-x thin films, grown with varying Se content by a co-sputtered deposition method. We observe a peak at 1.203 eV in the CdSexTe1-x film for x = 0.21, which shifts towards higher energies with increase in laser power. This peak was assigned to a donor-to-acceptor (DAP) transition, with a measured j-shift of ∼4.7 meV/decade. Temperature dependent PL intensity measurements confirm that the observed DAP peak involves a shallow defect state of binding energy ∼34.7 meV. In contrast, a free-to-bound (FB) peak at 1.294 eV involving a shallow defect of binding energy ∼18.3 meV was observed in the CdSexTe1-x film for x = 0.14. Additionally, we observe band edge emission at 1.452 eV and 1.448 eV in CdSexTe1-x films for x = 0.14 and x = 0.21 respectively. Our analysis shows that the Se concentration not only changes the band gap energy of the resulting CdSexTe1-x alloy thin film, but also modifies the nature of the dominant observed defect emission.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Paudel, N. R., Poplawsky, J. D., Moore, K. L. and Yan, Y., IEEE J. Photovolt. 5 (5), 14921496 (2015).CrossRefGoogle Scholar
Paudel, N. R. and Yan, Y., Appl. Phys. Lett. 105 (18), 183510 (2014).CrossRefGoogle Scholar
Poplawsky, J. D., Guo, W., Paudel, N., Ng, A., More, K., Leonard, D. and Yan, Y., Nat. Commun. 7, 12537 (2016).CrossRefGoogle Scholar
Josell, D., Debnath, R., Ha, J. Y., Guyer, J., Sahiner, M. A., Reehil, C. J., Manners, W. A. and Nguyen, N. V., ACS Appl. Mater. Interfaces 6 (18), 1597215979 (2014).CrossRefGoogle Scholar
Kim, D. U., Hangarter, C. M., Debnath, R., Ha, J. Y., Beauchamp, C. R., Widstrom, M. D., Guyer, J. E., Nguyen, N., Yoo, B. Y. and Josell, D., Sol. Energy Mater. Sol. Cells 109, 246253 (2013).CrossRefGoogle Scholar
Ma, J. and Wei, S.-H., Phys. Rev. B 87 (24), 241201 (2013).CrossRefGoogle Scholar
Nacir, T., Ihab, M. O. and Hussain, A., J. Phys.: Condens. Matter 21 (7), 075802 (2009).Google Scholar
Wei, S.-H., Zhang, S. B. and Zunger, A., J. Appl. Phys. 87 (3), 13041311 (2000).CrossRefGoogle Scholar
Paudel, N. R., Grice, C. R., Xiao, C. and Yan, Y., Journal of Applied Physics 116 (4), 044506 (2014).CrossRefGoogle Scholar
Krustok, J., Mädasson, J. and Hiie, J., Phys. Status Solidi A 165 (2), 517525 (1998).3.0.CO;2-O>CrossRefGoogle Scholar
Krustok, J., Valdna, V., Hjelt, K. and Collan, H., J. Appl. Phys. 80 (3), 17571762 (1996).CrossRefGoogle Scholar
Price, K. J., Grecu, D., Shvydka, D. and Compaan, A. D., presented at the Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036), 2000 (unpublished).Google Scholar
Savitskii, A. V., Parfenyuk, O. A., Ilashchuk, M. I., Ulyanitskii, K. S., Chupyra, S. N. and Vakhnyak, N. D., Semiconductors 39 (7), 754758 (2005).CrossRefGoogle Scholar
Van Gheluwe, J., Versluys, J., Poelman, D. and Clauws, P., Thin Solid Films 480, 264268 (2005).CrossRefGoogle Scholar
Fernández, P., J. Optoelectron. Adv. Mater. 5, 20 (2003).Google Scholar
Schmidt, T., Daniel, G. and Lischka, K., J. Cryst. Growth 117 (1), 748752 (1992).CrossRefGoogle Scholar
Roland, P. J., Paudel, N. R., Chuanxiao, X., Yan, Y. and Ellingson, R. J., presented at the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014 (unpublished).Google Scholar
Peter YU, M. C., Fundamentals of Semiconductors, Physics and Materials Properties, 4 ed. (Springer-Verlag Berlin Heidelberg, 2010).Google Scholar
Thomas, D. G., Hopfield, J. J. and Augustyniak, W. M., Physical Review 140 (1A), A202A220 (1965).CrossRefGoogle Scholar
Gustavo, M., Sánchez, P. G. and Carlos, R., physica status solidi (b) 254 (11), 1700332 (2017).Google Scholar
Halliday, D. P., Potter, M. D. G., Mullins, J. T. and Brinkman, A. W., J. Cryst. Growth 220 (1), 3038 (2000).CrossRefGoogle Scholar
Kuciauskas, D., Dippo, P., Zhao, Z., Cheng, L., Kanevce, A., Metzger, W. K. and Gloeckler, M., IEEE J. Photovolt. 6 (1), 313318 (2016).CrossRefGoogle Scholar
Krustok, J., Collan, H. and Hjelt, K., J. Appl. Phys. 81 (3), 14421445 (1997).CrossRefGoogle Scholar
Krustok, J., Jagomägi, A., Raudoja, J. and Altosaar, M., Sol. Energy Mater. Sol. Cells 79 (3), 401408 (2003).CrossRefGoogle Scholar
Krustok, J., Raudoja, J., Schön, J. H., Yakushev, M. and Collan, H., Thin Solid Films 361-362, 406410 (2000).CrossRefGoogle Scholar