Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-03T17:59:09.426Z Has data issue: false hasContentIssue false

Molecular architecturing of a small two dimensional A-D-A molecule for photovoltaic application

Published online by Cambridge University Press:  23 May 2016

Vinila Nellissery Viswanathan
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012.
Arul Varman Kesavan
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012.
Praveen C Ramamurthy*
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012.
Get access

Abstract

A-D-A architectured quinoxaline and bezodithiophene based small molecule exhibiting low band gap was designed and synthesized for bulk heterojunction solar cell application. Two dimension conjugation to the molecule was imparted by using alkylated aromatic units. This effective extension of conjugation broadens the absorption spectra. Optical and electrochemical properties suggest that the synthesized molecule has a low band-gap and well matching frontier molecular orbital energy levels with that of PCBM. A photovoltaic device using this A-D-A molecule as the active layer was fabricated to evaluate the optoelectronics properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sun, Y., Welch, G. C., Leong, W. L., Takacs, C. J., Bazan, G. C. and Heeger, A. J., Nat. Mater., 2011, 11, 4448.Google Scholar
Ripaud, E., Demeter, D., Rousseau, T., Boucard-cétol, E., Allain, M., Po, R., Leriche, P. and Roncali, J., Dye. Pigment., 2012, 95, 126133.Google Scholar
Yong, W., Zhang, M., Xin, X., Li, Z., Wu, Y., Guo, X., Yang, Z. and Hou, J., J. Mater. Chem. A, 2013, 1, 1421414220.CrossRefGoogle Scholar
Paek, S., Choi, H., Sim, J., Song, K., Lee, J. K. and Ko, J., J. Phys. Chem. C, 2014, 118, 27193.Google Scholar
Gohier, F., Frère, P. and Roncali, J., J. Org. Chem., 2013, 78, 1497–503.Google Scholar
Kim, Y.-H. J., Baek, J. Y., Ha, J., Chung, D. S., Kwon, S.-K. and Park, C. E., J. Mater. Chem. C, 2014, 2, 4937.Google Scholar
Huang, J., Zhan, C., Zhang, X., Zhao, Y., Lu, Z., Jia, H., Jiang, B., Ye, J., Zhang, S., Tang, A., Liu, Y., Pei, Q. and Yao, J., 2013.Google Scholar
Dou, L., Chen, C., Yoshimura, K., Ohya, K., Chang, W., Gao, J., Liu, Y., Richard, E. and Yang, Y., 2013, 28.Google Scholar
Kuo, C. Y., Nie, W., Tsai, H., Yen, H. J., Mohite, A. D., Gupta, G., Dattelbaum, A. M., William, D. J., Cha, K. C., Yang, Y., Wang, L. and Wang, H. L., Macromolecules, 2014, 47, 10081020.Google Scholar
Ranjith, K., Swathi, S. K., Malavika, A. and Ramamurthy, P. C., Sol. Energy Mater. Sol. Cells, 2012, 105, 263271.Google Scholar
Murali, M. G., Rao, A. D. and Ramamurthy, P. C., RSC Adv., 2014, 4, 4490244910.Google Scholar
Gedefaw, D., Tessarolo, M., Zhuang, W., Kroon, R., Wang, E., Bolognesi, M., Seri, M., Muccini, M. and Andersson, M. R., Polym. Chem., 2014, 5, 2083.CrossRefGoogle Scholar
Murali, M. G., Rao, A. D. and Ramamurthy, P. C., RSC Adv. 2015,6, 962972.Google Scholar