Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T17:48:44.678Z Has data issue: false hasContentIssue false

Size-dependent emission of a dipole coupled to a metal nanoparticle

Published online by Cambridge University Press:  26 November 2020

Viktoriia Savchuk
Affiliation:
Department of Physics and Energy Sciences, University of Colorado Colorado Springs, and center for Biofrontiers Institute, University of Colorado, 1420 Austin Bluffs Parkway 80918, Colorado Springs, United States of America
Arthur R. Knize
Affiliation:
Department of Physics and Energy Sciences, University of Colorado Colorado Springs, and center for Biofrontiers Institute, University of Colorado, 1420 Austin Bluffs Parkway 80918, Colorado Springs, United States of America
Pavlo Pinchuk
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, United States of America
Anatoliy O. Pinchuk*
Affiliation:
Department of Physics and Energy Sciences, University of Colorado Colorado Springs, and center for Biofrontiers Institute, University of Colorado, 1420 Austin Bluffs Parkway 80918, Colorado Springs, United States of America
Get access

Abstract

We present a systematic numerical analysis of the quantum yield of an electric dipole coupled to a plasmonic nanoparticle. We observe that the yield is highly dependent on the distance between the electric dipole and the nanoparticle, the size and permittivity of the nanoparticle, and the wavelength of the incident radiation. Our results indicate that enhancement of the quantum yield is only possible for electric dipoles coupled to a nanoparticle with a radius of 20 nm or larger. As the size of the nanoparticle is increased, emission enhancement occurs at wavelengths dependent on the coupling distance.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Purcell, E. M., “Spontaneous emission probabilities at radis frequencies”, Phys. Rev. 69, 681 (1946).Google Scholar
Kuhn, H., “Classical Aspects of Energy Transfer in Molecular Systems”, J. Chem. Phys. 53, 101 (1970).CrossRefGoogle Scholar
Chance, R. R., Prock, A., and Silbey, R., “Lifetime of an Emitting Molecular Near a Partially Reflecting Surface”, J. Chem. Phys. 60, 2744 (1974).CrossRefGoogle Scholar
Chance, R. R., Prock, A., and Silbey, R., “Comments on the Classical Theory of Energy Transfer”, J. Chem. Phys. 62, 2245 (1975).CrossRefGoogle Scholar
Ruppin, R., “Decay of an Excited Molecule Near a Small Metal Sphere”, J. Chem. Phys. 76(4), 15 Feb. 1982.10.1063/1.443196CrossRefGoogle Scholar
Chigrin, D. N., Kumar, D., Cuma, D., von Plessen, G., “Emission Quenching of Magnetic Dipole Transitions Near a Metal Nanoparticle”, ACS Photonics 2016, 3, 27-34CrossRefGoogle Scholar
Anger, P., Bharadwaj, P., and Novotny, L., “Enhancement and Quenching of Single-Molecule Fluorescence”, Phys. Rev. Lett. 2006, 96, 1130021-1130024.10.1103/PhysRevLett.96.113002CrossRefGoogle ScholarPubMed
Savchuk, V., Gamernyk, R., Virt, I., Malynych, S., and Pinchuk, A., “Plasmon-exciton coupling in nanostructured metal-semiconductor composite films”, AIP Advances 9, 2019.CrossRefGoogle Scholar
Bardhan, R., Grady, N. K., Halas, N. J., “Nanoscale Control of Near-Infrared Fluorescence Enhancement Using Au Nanoshells”, Small 2008, 4, 1716-1722.CrossRefGoogle ScholarPubMed
Dulkeith, E., Ringler, M., Klar, T. A., and Feldmann, J., “Gold Nanoparticles Quench Flourescence by Phase Induced Radiative Rate Suppresion”, Nano Lett. 5, 585, 2005.CrossRefGoogle Scholar
Rakic, A. D., Djurisic, A. B., Elazar, J.M., Majewski, M. L., Appl Optics, 1998, 37, 5271.CrossRefGoogle Scholar
Bardhan, R., Grady, N. K., Cole, J. R., Joshi, A., and Halas, N. J., “Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods”, ACS Nano, Vol. 3, No.3, 2009.10.1021/nn900001qCrossRefGoogle ScholarPubMed
Lakowicz, J. R., “Radiative Decay Engineering 5: Metal Enhanced Fluorescence and Plasmon Emission”, Anal. Biochem, 337, 171-194, 2005.10.1016/j.ab.2004.11.026CrossRefGoogle ScholarPubMed
Topete, A., Alatorre-Meda, M., Iglesias, P., Villar-Alvarez, E. M., Barbosa, S., Costoya, J. A., Taboada, P., and Mosquera, V., “Fluorescent Drug-Loaded, Polymeric-Based, Branched Gold Nanoshells for Localized Multimodal Therapy and Imaging of Tumor Cells”, ACS Nano, Vol. 8, No. 3, 2725-2738, 2014.10.1021/nn406425hCrossRefGoogle Scholar
Li, W., Zhang, H., Guo, X., Wang, Z., Kong, F., Luo, L., Li, Q., Zhu, C., Yang, J., Lou, Y., Du, Y., and You, J., “Gold Nanospheres-Stabilized Indocyanine Green as a Synchronous Photodynamic-Photothermal Therapy Platform That Inhibits Tumor Growth and Metastasis”, ACS Appl. Mater. Interfaces 2017, 9, 3354-3367.CrossRefGoogle ScholarPubMed
Zheng, M., Yue, C., Ma, Y., Gong, P., Zhao, P., Zheng, C., Sheng, Z., Zhang, P., Wang, Z., Cai, L., “Single-Step Assembly of DOC/ICG Loaded Lipid-Polymer Nanoparticles for Highly Effective Chemo-Photothermal Combination Therapy”, ACS Nano, 2013, 7, 2056-2067.CrossRefGoogle Scholar
Marinica, D. C., Lourenco-Martins, H., Aizpurua, J., and Borisov, A. G., “Plexcitonic quenching by resonant electron transfer from quantum emitter to metallic nanoantenna”, Nano Lett. 13, 5972-5978, 2013.CrossRefGoogle ScholarPubMed
Govorov, A. O., Bryant, G. W., Zhang, W., Skeini, T., Lee, J., Kotov, N. A., Slocik, J. M., and Naik, R. R., “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies”, Nano Lett. 6(5), 984-994, 2006CrossRefGoogle Scholar
Ebner, J., Trugler, A., and Hohenester, U., “Optical excitations of hybrid metal-semiconductor nanoparticles”, Phys. J. B. 2015.Google Scholar
Achermann, M., “Exciton-plasmon interactions in metal-semiconductor nanostructures”, J. Phys. Chem. Lett. 1, 2837-2843, 2010.CrossRefGoogle Scholar
Mertens, H., Koenderink, A., Polman, A., “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gesten and Nitzan model”, Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76, 115123.10.1103/PhysRevB.76.115123CrossRefGoogle Scholar
Bohren, C. F., Huffman, D., “Absorption and scattering of light by small particles”, Wiley science paperback series; Wiley, 1983.Google Scholar
Chance, R. R., Prock, A., and Silbey, R., Advances in Chemical Physics (Wiley, New York, 1978), Vol. 37, p.1.Google Scholar