Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-27T13:01:12.213Z Has data issue: false hasContentIssue false

Sticky thermoelectric materials for flexible thermoelectric modules to capture low-temperature waste heat

Published online by Cambridge University Press:  31 January 2020

Norifusa Satoh*
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
Masaji Otsuka
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
Yasuaki Sakurai
Affiliation:
Denka Company Limited, Tokyo, 194-8560, Japan.
Takeshi Asami
Affiliation:
Denka Company Limited, Tokyo, 194-8560, Japan.
Yoshitsugu Goto
Affiliation:
Denka Company Limited, Tokyo, 194-8560, Japan.
Takashi Kawamori
Affiliation:
Hitachi Chemical Company, Ltd. Tsukuba, 300-4247, Japan
Takeshi Masaki
Affiliation:
Hitachi Chemical Company, Ltd. Tsukuba, 300-4247, Japan
Go Yatabe
Affiliation:
Hitachi Chemical Company, Ltd. Tsukuba, 300-4247, Japan
Jin Kawakita
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
Takao Mori
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
Get access

Abstract

We examined a working hypothesis of sticky thermoelectric (TE) materials, which is inversely designed to mass-produce flexible TE sheets with lamination or roll-to-roll processes without electric conductive adhesives. Herein, we prepared p-type and n-type sticky TE materials via mixing antimony and bismuth powders with low-volatilizable organic solvents to achieve a low thermal conductivity. Since the sticky TE materials are additionally injected into punched polymer sheets to contact with the upper and bottom electrodes in the fabrication process, the sticky TE modules of ca. 2.4 mm in thickness maintained temperature differences of ca. 10°C and 40°C on a hot plate of 40 °C and 120°C under a natural-air cooling condition with a fin. In the single-cell resistance analysis, we found that 75∼150-µm bismuth powder shows lower resistance than the smaller-sized one due to the fewer number of particle-particle interfaces in the electric pass between the upper and bottom electrodes. After adjusting the printed wiring pattern for the upper and bottom electrodes, we achieved 42 mV on a hot plate (120°C) with the 6 x 6 module having 212 Ω in the total resistance. In addition to the possibility of mass production at a reasonable cost, the sticky TE materials provide a low thermal conductivity for flexible TE modules to capture low-temperature waste heat under natural-air cooling conditions with fins for the purpose of energy harvesting.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, L. E., Science, 321, 1457 (2008).CrossRefGoogle Scholar
Bahk, J.-H., Fang, H., Yazawa, K., Ali, S., J. Mater. Chem .C. 3, 10362 (2015).CrossRefGoogle Scholar
Toshima, N., Synth Met. 225, 3 (2017).CrossRefGoogle Scholar
Petsagkourakis, I., Tybrandt, K., Crispin, X., Ohkubo, I., Satoh, N., Mori, T., Sci. Tech. Adv. Mater. 19, 836 (2018).CrossRefGoogle Scholar
Mori, T., Priya, S., MRS Bull. 43, 176 (2018).CrossRefGoogle Scholar
Nan, K., Kang, S. D., Li, K., Yu, K. J., Zhu, F., Wang, J., Dunn, A. C., Zhou, C., Xie, Z., Agne, M. T., Wang, H.,Luan, H., Zhang, Y., Huang, Y., Snyder, G. J., Rogers, J. A., Science Adv. 4, eaau5849 (2018).CrossRefGoogle Scholar
Shindo, T., Nakatani, Y., Oishi, T., Toshiba Rev. 63, 7 (2008).Google Scholar
Vining, C. B., Nat. Mater. 8, 83 (2009).CrossRefGoogle Scholar
Satoh, N., Otsuka, M., Ohki, T., Ohi, A., Sakurai, Y., Yamashita, Y., Mori, T.Sci. Tech. Adv. Mater. 19, 517 (2018).CrossRefGoogle Scholar
Iha, S., Akamine, S., Yamada, Y., Cem. Sci. Concr. Tech. 66, 645 (2012).CrossRefGoogle Scholar
Takezawa, Y., Hitachi Chem. Tech. Rep. 53, 5 (2009).Google Scholar
Wüsten, J., Potje-Kamloth, K.J. Phys. D: Appl. Phys. 41, 135113 (2008).CrossRefGoogle Scholar
Kawamori, T., Ogawa, T. Masaki T., Hitachi Chem. Tech. Rep. 61, 23 (2019).Google Scholar