Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-04T05:29:01.825Z Has data issue: false hasContentIssue false

STM Tip-Induced Switching in Molybdenum Disulfide-Based Atomristors

Published online by Cambridge University Press:  22 July 2019

Jesse E. Thompson*
Affiliation:
Department of Physics and Nanoscience Technology Center, University of Central Florida, Orlando, FL32826, U.S.A.
Brandon T. Blue
Affiliation:
Department of Physics and Nanoscience Technology Center, University of Central Florida, Orlando, FL32826, U.S.A.
Darian Smalley
Affiliation:
Department of Physics and Nanoscience Technology Center, University of Central Florida, Orlando, FL32826, U.S.A.
Fernand Torres-Davila
Affiliation:
Department of Physics and Nanoscience Technology Center, University of Central Florida, Orlando, FL32826, U.S.A.
Laurene Tetard
Affiliation:
Department of Physics and Nanoscience Technology Center, University of Central Florida, Orlando, FL32826, U.S.A.
Jeremy T. Robinson
Affiliation:
Naval Research Laboratory, Washington D.C., 20375, U.S.A.
Masahiro Ishigami
Affiliation:
Department of Physics and Nanoscience Technology Center, University of Central Florida, Orlando, FL32826, U.S.A.
Get access

Abstract

Scanning tunneling microscopy and spectroscopy (STM/STS) are used to electronically switch atomically-thin memristors, referred to as “atomristors”, based on a graphene/molybdenum disulfide (MoS2)/Au heterostructure. A gold-assisted exfoliation method was used to produce near-millimeter (mm) scale MoS2 on Au thin-film substrates, followed by transfer of a separately exfoliated graphene top layer. Our results reveal that it is possible to switch the conductivity of a graphene/MoS2/Au memristor stack using an STM tip. These results provide a path to further studies of atomically-thin memristors fabricated from heterostructures of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs).

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yu, S.: Neuro-inspired computing with emerging nonvolatile memorys. Proceedings of the IEEE 106, 260 (2018).CrossRefGoogle Scholar
Herculano-Houzel, S.: The human brain in numbers: a linearly scaled-up primate brain. Frontiers in human neuroscience 3, 31 (2009).CrossRefGoogle ScholarPubMed
Burr, G.W., Shelby, R.M., Sebastian, A., Kim, S., Kim, S., Sidler, S., Virwani, K., Ishii, M., Narayanan, P., Fumarola, A., Sanches, L.L., Boybat, I., Le Gallo, M., Moon, K., Woo, J., Hwang, H. and Leblebici, Y.: Neuromorphic computing using non-volatile memory. Advances in Physics: X 2, 89 (2017).Google Scholar
Kalita, H., Krishnaprasad, A., Choudhary, N., Das, S., Chung, H., Jung, Y. and Roy, T.: Artificial Neuron using MoS2/Graphene Threshold Switching Memristors, in 2018 76th Device Research Conference (DRC) (2018), pp. 1.CrossRefGoogle Scholar
Kalita, H., Krishnaprasad, A., Choudhary, N., Das, S., Dev, D., Ding, Y., Tetard, L., Chung, H.-S., Jung, Y. and Roy, T.: Artificial Neuron using Vertical MoS2/Graphene Threshold Switching Memristors. Scientific Reports 9, 53 (2019).CrossRefGoogle ScholarPubMed
Ge, R.J., Wu, X.H., Kim, M., Shi, J.P., Sonde, S., Tao, L., Zhang, Y.F., Lee, J.C. and Akinwande, D.: Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. Nano Letters 18, 434 (2018).CrossRefGoogle ScholarPubMed
Yan, X., Zhao, Q., Chen, A.P., Zhao, J., Zhou, Z., Wang, J., Wang, H., Zhang, L., Li, X., Xiao, Z., Wang, K., Qin, C., Wang, G., Pei, Y., Li, H., Ren, D., Chen, J. and Liu, Q.: Vacancy‐Induced Synaptic Behavior in 2D WS 2 Nanosheet–Based Memristor for Low‐Power Neuromorphic Computing. Small, 1901423 (2019).CrossRefGoogle Scholar
Kim, K.M., Zhang, J., Graves, C., Yang, J.J., Choi, B.J., Hwang, C.S., Li, Z. and Williams, R.S.: Low-Power, Self-Rectifying, and Forming-Free Memristor with an Asymmetric Programing Voltage for a High-Density Crossbar Application. Nano Letters 16, 6724 (2016).CrossRefGoogle ScholarPubMed
Chen, Q., Lin, M., Wang, Z., Zhao, X., Cai, Y., Liu, Q., Fang, Y., Yang, Y., He, M. and Huang, R.: Low Power Parylene-Based Memristors with a Graphene Barrier Layer for Flexible Electronics Applications. Advanced Electronic Materials 0, 1800852.CrossRefGoogle Scholar
Hwang, C.S.: Prospective of Semiconductor Memory Devices: from Memory System to Materials. Advanced Electronic Materials 1, 1400056 (2015).CrossRefGoogle Scholar
Sarwar, S.S., Saqueb, S.A.N., Quaiyum, F. and Rashid, A.B.M.H.: Memristor-Based Nonvolatile Random Access Memory: Hybrid Architecture for Low Power Compact Memory Design. IEEE Access 1, 29 (2013).CrossRefGoogle Scholar
Velicky, M., Donnelly, G.E., Hendren, W.R., McFarland, S., Scullion, D., DeBenedetti, W.J.I., Correa, G.C., Han, Y., Wain, A.J., Hines, M.A., Muller, D.A., Novoselov, K.S., Abruna, H.D., Bowman, R.M., Santos, E.J.G. and Huang, F.: Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano 12, 10463 (2018).CrossRefGoogle ScholarPubMed
Desai, S.B., Madhvapathy, S.R., Amani, M., Kiriya, D., Hettick, M., Tosun, M., Zhou, Y., Dubey, M., Ager, J.W. 3rd, Chrzan, D. and Javey, A.: Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. Adv Mater 28, 4053 (2016).CrossRefGoogle ScholarPubMed
Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L. and Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology 5, 722 (2010).CrossRefGoogle ScholarPubMed
Tien, D.H., Park, J.-Y., Kim, K.B., Lee, N., Choi, T., Kim, P., Taniguchi, T., Watanabe, K. and Seo, Y.: Study of Graphene-based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Interfaces 8, 3072 (2016).CrossRefGoogle ScholarPubMed
Ishigami, M., Chen, J.H., Cullen, W.G., Fuhrer, M.S. and Williams, E.D.: Atomic Structure of Graphene on SiO2. Nano Letters 7, 1643 (2007).CrossRefGoogle ScholarPubMed
Chen, W., Madhavan, V., Jamneala, T. and Crommie, M.F.: Scanning Tunneling Microscopy Observation of an Electronic Superlattice at the Surface of Clean Gold. Physical Review Letters 80, 1469 (1998).CrossRefGoogle Scholar
Ernst, S., Wirth, S., Rams, M., Dolocan, V. and Steglich, F.: Tip preparation for usage in an ultra-low temperature UHV scanning tunneling microscope. Science and Technology of Advanced Materials 8, 347 (2007).CrossRefGoogle Scholar
Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J. and Ryu, S.: Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 4, 2695 (2010).CrossRefGoogle ScholarPubMed
Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications 143, 47 (2007).CrossRefGoogle Scholar
Di Felice, D., Abad, E., González, C., Smogunov, A. and Dappe, Y.J.: Angle dependence of the local electronic properties of the graphene/MoS2interface determined byab initiocalculations. Journal of Physics D: Applied Physics 50 (2017).CrossRefGoogle Scholar
Chen, Y., Huang, S., Ji, X., Adepalli, K., Yin, K., Ling, X., Wang, X., Xue, J., Dresselhaus, M., Kong, J. and Yildiz, B.: Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering. ACS Nano 12, 2569 (2018).CrossRefGoogle ScholarPubMed
Miwa, J.A., Dendzik, M., Grønborg, S.S., Bianchi, M., Lauritsen, J.V., Hofmann, P. and Ulstrup, S.: Van der Waals Epitaxy of Two-Dimensional MoS2–Graphene Heterostructures in Ultrahigh Vacuum. ACS Nano 9, 6502 (2015).CrossRefGoogle Scholar
Zhang, C., Johnson, A., Hsu, C.-L., Li, L.-J. and Shih, C.-K.: Direct Imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending. Nano Letters 14, 2443 (2014).CrossRefGoogle ScholarPubMed
Fang, J., Vandenberghe, W.G. and Fischetti, M.V.: Microscopic dielectric permittivities of graphene nanoribbons and graphene. Physical Review B 94, 045318 (2016).CrossRefGoogle Scholar
Santos, E.J.G. and Kaxiras, E.: Electrically Driven Tuning of the Dielectric Constant in MoS2 Layers. ACS Nano 7, 10741 (2013).CrossRefGoogle ScholarPubMed
Kumar, K., Kim, Y.-S. and Yang, E.-H.: The influence of thermal annealing to remove polymeric residue on the electronic doping and morphological characteristics of graphene. Carbon 65, 35 (2013).CrossRefGoogle Scholar
Kukucska, G. and Koltai, J.: Theoretical Investigation of Strain and Doping on the Raman Spectra of Monolayer MoS 2, (2017).CrossRefGoogle Scholar