Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T01:18:11.461Z Has data issue: false hasContentIssue false

Tubulin Nanorings

Published online by Cambridge University Press:  01 February 2016

Hacène Boukari*
Affiliation:
Department of Physics and Engineering, OSCAR Center, Delaware State University, 1200 N. Dupont Hwy, Dover, DE 19901, U.S.A.
Dan L. Sackett
Affiliation:
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9200 Rockville Pike, Bethesda, MD 20892, U.S.A.
*
Get access

Abstract

Biological systems routinely produce nanoscopic molecular structures with considerably less dispersion in size and shape than encountered in most manufactured materials. Indeed, Biological structures are frequently and essentially monodisperse. An example of this uniformity, combined with an intriguing geometry, is the nanometer-scale protein nanorings produced by interaction of the protein tubulin with certain hydrophobic tri-, tetra- and pentapeptides originally extracted as natural products from marine biosystems. Different peptides produce different sized nanorings, but we focus on those produced by binding to tubulin of the cyclic depsipeptide cryptophycin. The nanorings that form upon binding of this ligand show a sharp mass distribution indicating that the nanorings are made of 8 tubulin dimers of 100 kDa.

In this submission, we demonstrate how a combination of fluorescence correlation spectroscopy, dynamic light scattering, electron microscopy, analytical ultracentrifugation, small-angle neutron scattering, and modeling is applied to reveal interactions of tubulin and cryptophycin in solution and to characterize their structures. We find that the cryptophycin-tubulin nanorings (∼25 nm diameter) are single-walled, appear rigid, are composed of 8 tubulin dimers in a single closed ring, and are stable upon dilution to nanomolar concentrations.

Similar studies with a different peptide, the linear pentapeptide dolastatin 10, demonstrated that binding of this peptide to tubulin produces larger nanorings (14 tubulin dimers, ∼45 nm diameter rings), with slightly different properties. The ability to adjust the ring size with different peptides, and produce uniform nanorings with properties that differ slightly between size classes, makes the tubulin-peptide ring structures an appealing structural system.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., Molecular Biology of the Cell 3rd Edition (Garland Publishing Inc., NY, USA, 1994).Google Scholar
Boukari, H., Nossal, R., Sackett, D., and Schuck, P., Phys. Rev. Lett. 93 98106 (2004).CrossRefGoogle Scholar
Boukari, H., Schuck, P., Sackett, D. L., Nossal, R., Biopolymers 86, 424 (2007).CrossRefGoogle Scholar
Boukari, H., Nossal, R., Sackett, D. L., Biochemistry 42 12921300 (2003).CrossRefGoogle Scholar
Watts, N. R., Cheng, N., West, W., Steven, A. C., Sackett, D. L., Biochemistry 41, 12662 (2002).CrossRefGoogle Scholar
Nogales, E., Whittaker, M., Milligan, R. A., Downing, K. H., Cell 96, 79 (1999).CrossRefGoogle Scholar
Bordas, J., Mandelkow, E. M., Mandelkow, E., J. Mol. Biol. 164, 89 (1983).CrossRefGoogle Scholar
Diaz, J. F., Pantos, E., Bordas, J., Andreu, J. M., J. Mol. Biol. 238, 214 (1994).CrossRefGoogle Scholar
Nordlander, P., ACS Nano 3, 488 (2009).CrossRefGoogle Scholar
Carlson, J. C. T., Sidhartha, S. J., Flenniken, M., Chou, T., Siegel, R. A., and Wagner, C. R., J. Am Chem. Soc. 128, 7630 (2006).CrossRefGoogle Scholar
Seo, S., Kim, H. C., Ko, H., and Cheng, M., J. Vac. Sci. Technol. B 25, 2271 (2007).CrossRefGoogle Scholar
Steele, J. M., Liu, Z., Wang, Y., and Zhang, X., Opt. Express 14, 5664 (2006).CrossRefGoogle Scholar
Bozhevolnyi, S.I., Volkov, V. S., Devaux, E., Laluet, J. Y., and Ebbesen, T. W., Nature 440, 508 (2006).CrossRefGoogle Scholar
Wang, B. and Wang, G. P., Appl. Phys. Lett. 89, 133106 (2006).CrossRefGoogle Scholar
Jung, K. Y., Teixeira, F. L., and Reano, R. M., J. Lightwave Technol. 25, 2757 (2007).CrossRefGoogle Scholar
Suarez, M. A., Grosjean, T., Charraut, D., and Courjon, D., Opt. Commun. 270, 447 (2007).CrossRefGoogle Scholar
Larsson, E. M., Alegret, J., Käll, M., and Sutherland, D. S., Nano Lett. 7, 1256 (2007).CrossRefGoogle Scholar
Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., and Nuzzo, P. G., Chem. Rev. 108, 494 (2008).CrossRefGoogle Scholar
Aizpurua, J., Hanarp, P., Sutherland, D. S., Käll, M., Bryant, G. W., de Abajo, F. J. G., Phys. Rev. Lett. 90, 057401 (2003).CrossRefGoogle Scholar
Laurent, G., Félidj, N., Grand, J., Aubard, J., and Lévi, G., Phys. Rev. B 73, 245417 (2006).CrossRefGoogle Scholar
Wang, S., Pile, D. F. P., Sun, C., and Zhang, X., Nano Lett. 7, 1076 (2007).CrossRefGoogle Scholar
Hao, F., Nordlander, P., Burnett, M. T., and Maier, S. A., Phys. Rev. B 76, 245417 (2007).CrossRefGoogle Scholar
Clark, A. W., Glidle, A., Cumming, D. R. S., and Cooper, J. M., Appl. Phys. Lett. 93, 023121 (2008).CrossRefGoogle Scholar
Liu, G. L., Lu, Y., Kim, J., Doll, J. C., and Lee, L. P., Adv. Mater. 17, 2683 (2005).CrossRefGoogle Scholar
Lu, Y., Liu, G. L., Kim, J., Mejia, Y. X., and Lee, L. P., Nano Lett. 5, 119 (2005).CrossRefGoogle Scholar
Chou, T. F., So, C., White, B. F., Carlson, J. C. T., Sarikaya, M., Wagner, C. R., ACS Nano 2, 2519 (2008).CrossRefGoogle Scholar
Zhang, S., Marini, D. M., Hwang, W., and Santoso, S., Cur. Opin. Chem. Biol. 6, 865 (2002).CrossRefGoogle Scholar
O’Sullivan, M. C., Sprafke, J. K., Kondratuk, D. V., Rinfray, C., Claridge, T. D. W., Saywell, A., Blunt, M. O., O’Shea, J. N., Beton, P. H., Malfois, M., Anderson, H. L., Nature 469, 72 (2011).CrossRefGoogle Scholar
Behrens, S., Habicht, W., Wagner, K., and Unger, E., Adv. Mater. 18, 264 (2006).CrossRefGoogle Scholar
Boukari, H. and Sackett, D. L. in Biophysical Tools for Biologists: Vol 1, Edited by Correia, J. J. and Detrich, H. W., III (ELSEVIER ACADEMIC PRESS INC, California; 2008).Google Scholar
Rigler, R. and Elson, E. S. Fluorescence Correlation Spectroscopy: Theory and Applications (Springer Series in Chemical Physics, Springer-Verlag, New York, 2001).CrossRefGoogle Scholar
Kostorz, G. Neutron Scattering (Academic Press, NY, 1979).Google Scholar
Goldstein, J., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J. R. Scanning Electron Microscopy and X-ray Microanalysis (Springer; 3rd Edition, 2007).Google Scholar
Berne, B. J. and Pecora, R. Dynamic Light Scattering (Wiley-Interscience, John Wiley and Sons, Inc., New York, NY, USA, 1976).Google Scholar
Svedberg, T., and Pederson, K. O. The Ultracentrifuge (Oxford Univ. Press, London, 1940).Google Scholar
Watts, N.R., Sackett, D.L., Ward, R.D., Miller, M.W., Wingfield, P.T., Stahl, S.S., Steven, A.C., J Cell Biol. 150 349–60 (2000).CrossRefGoogle Scholar
de La Torre, J. G. and Bloomfield, V. A. Q. Rev. Biophys. 14, 81 (1981).CrossRefGoogle Scholar
Mitra, A. and Sept, D., Biochemistry 43, 13955 (2004).CrossRefGoogle Scholar