Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-30T02:37:10.604Z Has data issue: false hasContentIssue false

Biomimetics and Biotemplating of Natural Materials

Published online by Cambridge University Press:  31 January 2011

Oskar Paris
Affiliation:
University of Leoben, Austria; tel. 43-3842-402-4600; fax 43-3842-402-4602; and e-mail oskar.paris@unileoben.ac.at.
Ingo Burgert
Affiliation:
Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany; tel. 49-331-567-9432; fax 49-331-567-9402; and e-mail ingo.burgert@mpikg.mpg.de.
Peter Fratzl
Affiliation:
Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany; tel. 49-331-567-9400; fax 49-331-567-9402; and e-mail peter.fratzl@mpikg.mpg.de.
Get access

Abstract

Natural materials display a wealth of structures and fulfill a variety of functions. Hierarchical structuring is one of the keys to providing multifunctionality and to adapting to varying needs of an organism. As a consequence, the natural environment represents not only a direct and renewable source of useful materials, such as wood, plant fibers, or even proteins of pharmaceutical importance, but also an enormous “database” of structures with exceptional mechanical, optical, or magnetic properties. Rather than focusing on the direct use of natural materials, this article discusses the use of structures that appeared in evolution and have been implemented in artificial materials of an entirely different type and chemical composition. This may be done either by directly copying the structure (biotemplating) or by extracting the design principles encoded in them for the fabrication of novel bioinspired materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ashby, M.F., Acta Metall. 37, 1273 (1989).CrossRefGoogle Scholar
2.Lichtenegger, H., Reiterer, A., Stanzl-Tschegg, S.E., Fratzl, P., J. Struct. Biol. 128, 257 (1999).CrossRefGoogle Scholar
3.Mattheck, C., Kubler, H., The Internal Optimization of Trees (Springer Verlag, Berlin, 1995).Google Scholar
4.Burgert, I., Fratzl, P., Phil. Trans. R. Soc. A 367, 1541 (2009).CrossRefGoogle Scholar
5.Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P., Aizenberg, J., Science 315, 487 (2007).CrossRefGoogle Scholar
6.Baer, E., Cassidy, J.J., Hiltner, A., Pure Appl. Chem. 63, 961 (1991).CrossRefGoogle Scholar
7.Tirrell, D.A., Hierarchical Structures in Biology as a Guide for New Materials Technology (National Academy Press, Washington, 1994), p. 130.Google Scholar
8.Weiner, S., Wagner, H.D., Annu. Rev. Mater. Sci. 28, 271 (1998).CrossRefGoogle Scholar
9.Fratzl, P., Weinkamer, R., Prog. Mater. Sci. 52, 1263 (2007).CrossRefGoogle Scholar
10.Fengel, D., Wegener, G., Wood, Chemistry, Ultrustructure, Reactions (de Gruyter, Berlin, 1989).Google Scholar
11.Jakob, H.F., Fengel, D., Tschegg, S.E., Fratzl, P., Macromolecules 28, 8782 (1995).CrossRefGoogle Scholar
12.Reiterer, A., Lichtenegger, H., Fratzl, P., Stanzl-Tschegg, S.E., J. Mater. Sci. 36, 4681 (2001).CrossRefGoogle Scholar
13.Jaroniec, M., Schuth, F., Chem. Mater. 20, 599 (2008).CrossRefGoogle Scholar
14.Dujardin, E., Mann, S., Adv. Eng. Mater. 4, 461 (2002).3.0.CO;2-K>CrossRefGoogle Scholar
15.Sotiropoulou, S., Sierra-Sastre, Y., Mark, S.S., Batt, C.A., Chem. Mater. 20, 821 (2008).CrossRefGoogle Scholar
16.Fan, T.X., Chow, S.K., Di, Z., Prog. Mater. Sci. 54, 542 (2009).CrossRefGoogle Scholar
17.Hall, S.R., Proc. R. Soc. A 465, 335 (2009).CrossRefGoogle Scholar
18.Greil, P., J. Eur. Ceram. Soc. 21, 105 (2001).CrossRefGoogle Scholar
19.Lee, S.M., Pippel, E., Gosele, U., Dresbach, C., Qin, Y., Chandran, C.V., Brauniger, T., Hause, G., Knez, M., Science 324, 488 (2009).CrossRefGoogle Scholar
20.Mann, S., Biomineralization—Principles and Concepts in Bioinorganic Chemistry (Oxford University Press, NY, 2001), p. 198.Google Scholar
21.Antal, M.J., Gronli, M., Ind. Eng. Chem. Res. 42, 1619 (2003).CrossRefGoogle Scholar
22.Mohan, D., Pittman, C.U., Steele, P.H., Energy Fuels 20, 848 (2006).CrossRefGoogle Scholar
23.Ioannidou, O., Zabaniotou, A., Renewable Sustainable Energy Rev. 11, 1966 (2007).CrossRefGoogle Scholar
24.Byrne, C.E., Nagle, D.C., Carbon 35, 259 (1997).CrossRefGoogle Scholar
25.Paris, O., Zollfrank, C., Zickler, G.A., Carbon 43, 53 (2005).CrossRefGoogle Scholar
26.Singh, M., Martinez-Fernandez, J., de Arellano-Lopez, A.R., Curr. Opin. Solid State Mater. Sci. 7, 247 (2003).CrossRefGoogle Scholar
27.Shin, Y.S., Liu, J., Chang, J.H., Nie, Z.M., Exarhos, G., Adv. Mater. 13, 728 (2001).3.0.CO;2-J>CrossRefGoogle Scholar
28.Liu, Z.T., Fan, T.X., Zhang, W., Zhang, D., Micropor. Mesopor. Mater. 85, 82 (2005).CrossRefGoogle Scholar
29.Deshpande, A., Burgert, I., Paris, O., Small 2, 994 (2006).CrossRefGoogle Scholar
30.Rambo, C.R., Sieber, H., Adv. Mater. 17, 1088 (2005).CrossRefGoogle Scholar
31.Kostova, M.H., Zollfrank, C., Batentschuk, M., Goetz-Neunhoeffer, F., Winnacker, A., Greil, P., Adv. Funct. Mater. 19, 599 (2009).CrossRefGoogle Scholar
32.Dong, A., Wang, Y., Tang, Y., Ren, N., Zhang, Y., Yue, Y., Gao, Z., Adv. Mater. 14, 926 (2002).3.0.CO;2-1>CrossRefGoogle Scholar
33.Hall, S.R., Bolger, H., Mann, S., Chem. Commun. 2784 (2003).CrossRefGoogle Scholar
34.Huang, J., Kunitake, T., J. Am. Chem. Soc. 125, 11834 (2003).CrossRefGoogle Scholar
35.Zhu, S.M., Zhang, D., Li, Z.Q., Furukawa, H., Chen, Z.X., Langmuir 24, 6292 (2008).CrossRefGoogle Scholar
36.Valtchev, V., Smaihi, M., Faust, A.C., Vidal, L., Angew. Chem. Int. Ed. 42, 2782 (2003).CrossRefGoogle Scholar
37.Sapei, L., Noeske, R., Strauch, P., Paris, O., Chem. Mater. 20, 2020 (2008).CrossRefGoogle Scholar
38.Cook, G., Timms, P.L., Spickermann, C.G., Angew. Chem. Int. Ed. 42, 557 (2003).CrossRefGoogle Scholar
39.Zhang, W., Zhang, D., Fan, T.X., Gu, J.J., Ding, R., Wang, H., Guo, Q.X., Ogawa, H., Chem. Mater. 21, 33 (2009).CrossRefGoogle Scholar
40.Zhang, W., Zhang, D., Fan, T.X., Ding, J., Gu, J.J., Guo, Q., Ogawa, H., Mater. Sci. Eng., C 29, 92 (2009).CrossRefGoogle Scholar
41.Vincent, J.F.V., Bogatyreva, O.A., Bogatyrev, N.R., Bowyer, A., Pahl, A.K., J. R. Soc. Interface 3, 471 (2006).CrossRefGoogle Scholar
42.Barth, F.G., Curr. Opin. Neurobiol. 14, 415 (2004).CrossRefGoogle Scholar
43.Dangles, O., Magal, C., Pierre, D., Olivier, A., Casas, J., J. Exp. Biol. 208, 461 (2005).CrossRefGoogle Scholar
44.Magal, C., Dangles, O., Caparroy, P., Casas, J., J. Theor. Biol. 241, 459 (2006).CrossRefGoogle Scholar
45.Seidel, R., Gourrier, A., Burghammer, M., Riekel, C., Jeronimidis, G., Paris, O., Micron 39, 198 (2008).CrossRefGoogle Scholar
46.Skordos, A., Chan, P.H., Vincent, J.F.V., Jeronimidis, G., Philos. Trans. R. Soc. London, Ser. A 360, 239 (2002).CrossRefGoogle Scholar
47.French, A.S., Torkkeli, P.H., Seyfarth, E.A., J. Comp. Physiol. A 188, 739 (2002).CrossRefGoogle Scholar
48.Krijnen, G., Lammerink, T., Wiegerink, R., Casas, J., IEEE Sensors 1–3, 539 (2007).Google Scholar
49.Braam, J., New Phytol. 165, 373 (2005).CrossRefGoogle Scholar
50.Monshausen, G.B., Gilroy, S., Trends Cell Biol. 19, 228 (2009).CrossRefGoogle Scholar
51.DiPalma, J.R., McMichael, R., DiPalma, M., Science 152, 539 (1966).CrossRefGoogle Scholar
52.Forterre, Y., Skotheim, J.M., Dumais, J., Mahadevan, L., Nature 433, 421 (2005).CrossRefGoogle Scholar
53.Samejima, M., Sibaoka, T., Plant Cell Physiol. 21, 467 (1980).Google Scholar
54.Matthews, L.A., Giurgiutiu, V., Smart Struct. Mater. 2006: Smart Struct. Integr. Syst. 6173, 6173101 (2006).Google Scholar
55.Shahinpoor, M., Thompson, M.S., Mater. Sci. Eng., C 2, 229 (1995).CrossRefGoogle Scholar
56.Taya, M., Smart Struct. Mater. 2003: Electroact. Polym. Actuators Devices 5051, 54 (2003).Google Scholar
57.Barthelat, F., Philos. Trans. R. Soc. London, Ser. A 365, 2907 (2007).Google Scholar
58.Fratzl, P., Burgert, I., Gupta, S., Phys. Chem. Chem. Phys. 6, 5575 (2004).CrossRefGoogle Scholar
59.Mayer, G., Sarikaya, M., Exp. Mech. 42, 395 (2002).CrossRefGoogle Scholar
60.Feng, Q.L., Cui, F.Z., Pu, G., Wang, R.Z., Li, H.D., Mater. Sci. Eng., C 11, 19 (2000).CrossRefGoogle Scholar
61.Nassif, N., Pinna, N., Gehrke, N., Antonietti, M., Jager, C., Colfen, H., Proc. Nat. Acad. Sci. U.S.A. 102, 12653 (2005).CrossRefGoogle Scholar
62.Smith, B.L., Schaffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., Hansma, P.K., Nature 399, 761 (1999).CrossRefGoogle Scholar
63.Almqvist, N., Thomson, N.H., Smith, B.L., Stucky, G.D., Morse, D.E., Hansma, P.K., Mater. Sci. Eng., C 7, 37 (1999).CrossRefGoogle Scholar
64.Fritz, M., Belcher, A.M., Radmacher, M., Walters, D.A., Hansma, P.K., Stucky, G.D., Morse, D.E., Mann, S., Nature 371, 49 (1994).CrossRefGoogle Scholar
65.Luz, G.M., Mano, J.F., Philos. Trans. R. Soc. London, Ser. A 367, 1587 (2009).Google Scholar
66.Mayer, G., Science 310, 1144 (2005).CrossRefGoogle Scholar
67.Weiner, S., CRC Crit. Rev. Biochem. 20, 365 (1986).CrossRefGoogle Scholar
68.Fratzl, P., Gupta, H.S., Paschalis, E.P., Roschger, P., J. Mater. Chem. 14, 2115 (2004).CrossRefGoogle Scholar
69.Al-Sawalmih, A., Li, C., Siegel, S., Fratzl, P., Paris, O., Adv. Mater. 21, 4011 (2009).CrossRefGoogle Scholar
70.Ma, Y.R., Aichmayer, B., Paris, O., Fratzl, P., Meibom, A., Metzler, R.A., Politi, Y., Addadi, L., Gilbert, P.U.P.A., Weiner, S., Proc. Nat. Acad. Sci. U.S.A. 106, 6048 (2009).CrossRefGoogle Scholar
71.Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., Fratzl, P., Science 309, 275 (2005).CrossRefGoogle Scholar
72.Puxkandl, R., Zizak, I., Paris, O., Keckes, J., Tesch, W., Bernstorff, S., Purslow, P., Fratzl, P., Philos. Trans. R. Soc. London, Ser. B 357, 191 (2002).CrossRefGoogle Scholar
73.Keckes, J., Burgert, I., Fruhmann, K., Muller, M., Kolln, K., Hamilton, M., Burghammer, M., Roth, S.V., Stanzl-Tschegg, S., Fratzl, P., Nat. Mater. 2, 810 (2003).CrossRefGoogle Scholar
74.Elbaum, R., Zaltzman, L., Burgert, I., Fratzl, P., Science 316, 884 (2007).CrossRefGoogle Scholar
75.Dawson, J., Vincent, J.F.V., Rocca, A.M., Nature 390, 668 (1997).CrossRefGoogle Scholar
76.Reyssat, E., Mahadevan, L., J. R. Soc. Interface 6, 951 (2009).CrossRefGoogle Scholar
77.Santulli, C., Patel, S.I., Jeronimidis, G., Davis, F.J., Mitchell, G.R., Smart Mater. Struct. 14, 434 (2005).CrossRefGoogle Scholar
78.Bowling, A.J., Vaughn, K.C., Am. J. Bot. 96, 719 (2009).CrossRefGoogle Scholar
79.Clair, B., Ruelle, J., Beauchene, J., Prevost, M.F., Fournier, M., IAWA J. 27, 329 (2006).CrossRefGoogle Scholar
80.Fisher, J.B., Am. J. Bot. 95, 1337 (2008).CrossRefGoogle Scholar
81.Meloche, C.G., Knox, J.P., Vaughn, K.C., Planta 225, 485 (2007).CrossRefGoogle Scholar
82.Goswami, L., Dunlop, J.W.C., Jungnikl, K., Eder, M., Gierlinger, N., Coutand, C., Jeronimidis, G., Fratzl, P., Burgert, I., Plant J. 56, 531 (2008).CrossRefGoogle Scholar
83.Ortiz, C., Boyce, M.C., Science 319, 1053 (2008).CrossRefGoogle ScholarPubMed
84.Munch, E., Launey, M.E., Alsem, D.H., Saiz, E., Tomsia, A.P., Ritchie, R.O., Science 322, 1516 (2008).CrossRefGoogle Scholar
85.Messersmith, P.B., Science 319, 1767 (2008).CrossRefGoogle ScholarPubMed
86.Aizenberg, J., Fratzl, P., Adv. Mater. 21, 387 (2009).CrossRefGoogle Scholar
87.Fratzl, P. and Barth, F.G., Nature 462, 442 (2009).CrossRefGoogle Scholar