Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-jzjqj Total loading time: 0.392 Render date: 2022-08-14T15:45:25.649Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Connecting Electrical and Molecular Properties of Semiconducting Polymers for Thin-Film Transistors

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

An overview of recent work on the connection between electrical and molecular properties of semiconducting polymers for thin-film transistors (TFTs) is presented. A description of the molecular packing and microstructure of amorphous to semicrystalline semiconducting polymers is presented. The features of basic models for electrical transport in TFTs are discussed. These studies indicate that defect states and traps are as important as ordered domains for understanding transport in semiconducting polymers. Advanced methods, such as electric force microscopy, useful for measuring the characteristics of defect states and charge traps, are briefly reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chabinyc, M.L., Salleo, A., Chem. Mater. 16, 4509 (2004).CrossRefGoogle Scholar
2.Clemens, W., Fix, W., Ficker, J., Knobloch, A., Ullmann, A., J. Mater. Res. 19, 1963 (2004).CrossRefGoogle Scholar
3.Crawford, G.P., Ed., Flexible Flat Panel Displays (Wiley, New York, 2005).CrossRefGoogle Scholar
4.Burns, S.E., Cain, P., Mills, J., Wang, J., Sirringhaus, H., MRS Bull. 28, 829 (2003).CrossRefGoogle Scholar
5.Gelinck, G.H., Huitema, H.E.A., van Veenendaal, E., Cantatore, E., Schrijnemakers, L., van der Putten, J.B.P.H., Geuns, T.C.T., Beenhakkers, M., Giesbers, J.B., Huisman, B.-H., Meijer, E.J., Benito, E.M., Touwslager, F.J., Marsman, A.W., van Rens, B.J.E., de Leeuw, D.M., Nat. Mater. 3, 106 (2004).CrossRefGoogle Scholar
6.Veres, J., Ogier, S.D., Leeming, S.W., Cupertino, D.C., Khaffaf, S.M., Adv. Funct. Mater. 13, 199 (2003).CrossRefGoogle Scholar
7.Donald, A., Windle, A., Hanna, S., Liquid Crystalline Polymers (Cambridge University Press, Cambridge, U.K., ed. 2, 2006).Google Scholar
8.Sirringhaus, H., Wilson, R.J., Friend, R.H., Inbasekaran, M., Wu, W., Woo, E.P., Grell, M., Bradley, D.D.C., Appl. Phys. Lett. 77, 406 (2000).CrossRefGoogle Scholar
9.Bürgi, L., Richards, T., Chiesa, M., Friend, R.H., Sirringhaus, H., Synth. Met. 146, 297 (2004).CrossRefGoogle Scholar
10.Deng, Y.Y., Sirringhaus, H., Phys. Rev. B 72, 045207 (2005).CrossRefGoogle Scholar
11.Donley, C.L., Zaumseil, J., Andreasen, J.W., Nielsen, M.M., Sirringhaus, H., Friend, R.H., Kim, J.-S., J. Am. Chem. Soc. 127, 12890 (2005).CrossRefGoogle Scholar
12.Bao, Z., Dodabalapur, A., Lovinger, A.J., Appl. Phys. Lett. 69, 4108 (1996).CrossRefGoogle Scholar
13.Prosa, T.J., Winokur, M.J., Moulton, J., Smith, P., Heeger, A.J., Macromolecules 25, 4364 (1992).CrossRefGoogle Scholar
14.Kline, R.J., McGehee, M.D., Toney, M.F., Nat. Mater. 5, 222 (2006).CrossRefGoogle Scholar
15.Gurau, M.C., Delongchamp, D.M., Vogel, B.M., Lin, E.K., Fischer, D.A., Sambasivan, S., Richter, L.J., Langmuir 23, 834 (2007).CrossRefGoogle Scholar
16.Yang, H., Shin, T.J., Bao, Z., Ryu, C.Y., J. Polym. Sci. B: Polym. Phys. 45, 1303 (2007).CrossRefGoogle Scholar
17.Ong, B.S., Wu, Y., Liu, P., Gardner, S., J. Am. Chem. Soc. 126, 3378 (2004).CrossRefGoogle Scholar
18.Wu, Y., Liu, P., Ong, B.S., Srikumar, T., Zhao, N., Botton, G., Zhu, S., Appl. Phys. Lett. 86, 142102 (2005).CrossRefGoogle Scholar
19.McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M.L., Kline, R.J., McGehee, M.D., Toney, M.F., Nat. Mater. 5, 328 (2006).CrossRefGoogle Scholar
20.Chabinyc, M.L., Toney, M.F., Kline, R.J., McCulloch, I., Heeney, M., J. Am. Chem. Soc. 129, 3226 (2007).CrossRefGoogle Scholar
21.DeLongchamp, D.M., Kline, R.J., Lin, E.K., Fischer, D.A., Richter, L.J., Lucas, L.A., Heeney, M., McCulloch, I., Northrup, J.E., Adv. Mater. 19, 833 (2007).CrossRefGoogle Scholar
22.Kline, R.J., DeLongchamp, D.M., Fischer, D.A., Lin, E.K., Heeney, M., McCulloch, I., Toney, M.F., Appl. Phys. Lett. 90, 062117 (2007).CrossRefGoogle Scholar
23.Kline, R.J., McGehee, M.D., Kadnikova, E.N., Liu, J., Frechet, J.M.J., Toney, M.F., Macromolecules 38, 3312 (2005).CrossRefGoogle Scholar
24.Chang, J.-F., Clark, J., Zhao, N., Sirringhaus, H., Breiby, D.W., Andreasen, J.W., Nielsen, M.M., Giles, M., Heeney, M., McCulloch, I., Phys. Rev. B 74, 115318 (2006).CrossRefGoogle Scholar
25.Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., De Leeuw, D.M., Nature 401, 685 (1999).CrossRefGoogle Scholar
26.Street, R.A., Northrup, J.E., Salleo, A., Phys. Rev. B 71, 165202 (2005).CrossRefGoogle Scholar
27.Northrup, J.E., Phys. Rev. B 76, 245202 (2007).CrossRefGoogle Scholar
28.Mott, N.F., Davis, E.A., Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, U.K., 1979).Google Scholar
29.Street, R.A., Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, U.K., 1991).CrossRefGoogle Scholar
30.Tanase, C., Blom, P.W.M., Leeuw, D.M.D., Meijer, E.J., Phys. Status Solidi A 201, 1236 (2004).CrossRefGoogle Scholar
31.Vissenberg, M.C.J.M., Matters, M., Phys. Rev. B 57, 12964 (1998).CrossRefGoogle Scholar
32.Pasveer, W.F., Cottaar, J., Tanase, C., Coehoorn, R., Bobbert, P.A., Blom, P.W.M., Leeuw, D.M.D., Michels, M.A.J., Phys. Rev. Lett. 94, 206601 (2005).CrossRefGoogle Scholar
33.Horowitz, G., Hajlaoui, M.E., Hajlaoui, R., J. Appl. Phys. 87, 4456 (2000).CrossRefGoogle Scholar
34.Salleo, A., Chen, T.W., Volkel, A., Wu, Y., Liu, P., Ong, B.S., Street, R.A., Phys. Rev. B 70, 115311 (2004).CrossRefGoogle Scholar
35.Chang, J.-F., Sirringhaus, H., Giles, M., Heeney, M., McCulloch, I., Phys. Rev. B 76, 205204 (2007).CrossRefGoogle Scholar
36.Salleo, A., Endicott, F.E., Street, R.A., Appl. Phys. Lett. 86, 263505 (2005).CrossRefGoogle Scholar
37.Street, R.A., Chabinyc, M.L., Endicott, F., Ong, B., J. Appl. Phys. 100, 114518 (2006).CrossRefGoogle Scholar
38.Goris, L., Poruba, A., Hod'ákova, L., Vanecek, M., Haenen, K., Nesládek, M., Wagner, P., Vanderzande, D., Schepper, L.D., Manca, J.V., Appl. Phys. Lett 88, 052113 (2006).CrossRefGoogle Scholar
39.Vanecek, M., Poruba, A., Appl. Phys. Lett 80, 719721 (2002).CrossRefGoogle Scholar
40.Jackson, W.B., Amer, N.M., Phys. Rev. B 25, 559 (1982).Google Scholar
41.Vandewal, K., Goris, L., Haenen, K., Geerts, Y., Manca, J.V., Eur. Phys. J.: Appl. Phys. 36, 281 (2007).Google Scholar
42.Matters, M., deLeeuw, D.M., Herwig, P.T., Brown, A.R., Synth. Met. 102, 998 (1999).CrossRefGoogle Scholar
43.Street, R.A., Salleo, A., Chabinyc, M.L., Phys. Rev. B 68, 085316 (2003).CrossRefGoogle Scholar
44.Mathijssen, S.G.J., Cölle, M., Gomes, H., Smits, E.C.P., Boer, B.D., McCulloch, I., Bobbert, P.A., Leeuw, D.M.D., Adv. Mater. 19, 2785 (2007).CrossRefGoogle Scholar
45.Ng, T.N., Marohn, J.A., Chabinyc, M.L., J. Appl. Phys. 100, 084505 (2006).CrossRefGoogle Scholar
46.Arias, A.C., Daniel, J., Krusor, B., Ready, S., Sholin, V., Street, R., J. Soc. Inf. Display 15, 485 (2007).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Connecting Electrical and Molecular Properties of Semiconducting Polymers for Thin-Film Transistors
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Connecting Electrical and Molecular Properties of Semiconducting Polymers for Thin-Film Transistors
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Connecting Electrical and Molecular Properties of Semiconducting Polymers for Thin-Film Transistors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *