Hostname: page-component-797576ffbb-pxgks Total loading time: 0 Render date: 2023-12-05T01:29:58.065Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Density-functional theory guided advances in phase-change materials and memories

Published online by Cambridge University Press:  08 October 2015

Wei Zhang
Xi’an Jiaotong University, Xi’an, China;
Volker L. Deringer
RWTH Aachen University, Aachen, Germany;
Richard Dronskowski
RWTH Aachen University, Aachen, Germany;
Riccardo Mazzarello
RWTH Aachen University, Aachen, Germany;
Evan Ma
Johns Hopkins University, USA;
Matthias Wuttig
RWTH Aachen University, Aachen, Germany;
Get access


Phase-change materials (PCMs) are promising candidates for novel data-storage and memory applications. They encode digital information by exploiting the optical and electronic contrast between amorphous and crystalline states. Rapid and reversible switching between the two states can be induced by voltage or laser pulses. Here, we review how density-functional theory (DFT) is advancing our understanding of PCMs. We describe key DFT insights into structural, electronic, and bonding properties of PCMs and into technologically relevant processes such as fast crystallization and relaxation of the amorphous state. We also comment on the leading role played by predictive DFT simulations in new potential applications of PCMs, including topological properties, switching between different topological states, and magnetic properties of doped PCMs. Such DFT-based approaches are also projected to be powerful in guiding advances in other materials-science fields.

Research Article
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Wuttig, M., Yamada, N., Nat. Mater. 6, 824 (2007).CrossRefGoogle Scholar
Siegrist, T., Merkelbach, P., Wuttig, M., Annu. Rev. Condens. Matter Phys. 3, 215 (2012).CrossRefGoogle Scholar
Raoux, S., Xiong, F., Wuttig, M., Pop, E., MRS Bull. 39, 703 (2014).CrossRefGoogle Scholar
Elliott, S.R., Int. J. Appl. Glass Sci. 6, 15 (2015).CrossRefGoogle Scholar
Lankhorst, M.H., Ketelaars, B.W., Wolters, R.A., Nat. Mater. 4, 347 (2005).CrossRefGoogle Scholar
Martin, R.M., Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, UK, 2004).CrossRefGoogle Scholar
Marx, D., Hutter, J., Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, Cambridge, UK, 2009).CrossRefGoogle Scholar
Deringer, V.L., Dronskowski, R., Wuttig, M., Adv. Funct. Mater., published online June 10, 2015, Scholar
Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J., Wuttig, M., Nat. Mater. 7, 653 (2008).CrossRefGoogle Scholar
Lencer, D., Salinga, M., Grabowski, B., Hickel, T., Neugebauer, J., Wuttig, M., Nat. Mater. 7, 972 (2008).CrossRefGoogle Scholar
Huang, B., Robertson, J., Phys. Rev. B 81, 081204(R) (2010).CrossRefGoogle Scholar
Caravati, S., Bernasconi, M., Parrinello, M., J. Phys. Condens. Matter 22, 315801 (2010).CrossRefGoogle Scholar
Yamada, N., MRS Bull. 21, 48 (1996).CrossRefGoogle Scholar
Matsunaga, T., Yamada, N., Phys. Rev. B 69, 104111 (2004).CrossRefGoogle Scholar
Wuttig, M., Lusebrink, D., Wamwangi, D., Welnic, W., Gillessen, M., Dronskowski, R., Nat. Mater. 6, 122 (2007).CrossRefGoogle Scholar
Dronskowski, R., Blöchl, P.E., J. Phys. Chem. 97, 8617 (1993).CrossRefGoogle Scholar
Waghmare, U.V., Spaldin, N.A., Kandpal, H.C., Seshadri, R., Phys. Rev. B 67, 125111 (2003).CrossRefGoogle Scholar
Stoffel, R.P., Deringer, V.L., Simon, R.E., Hermann, R.P., Dronskowski, R., J. Phys. Condens. Matter 27, 085402 (2015).CrossRefGoogle Scholar
Siegrist, T., Jost, P., Volker, H., Woda, M., Merkelbach, P., Schlockermann, C., Wuttig, M., Nat. Mater. 10, 202 (2011).CrossRefGoogle Scholar
Edwards, A., Pineda, A., Schultz, P., Martin, M., Thompson, A., Hjalmarson, H., Umrigar, C., Phys. Rev. B 73, 045210 (2006).CrossRefGoogle Scholar
Caravati, S., Bernasconi, M., Kühne, T.D., Krack, M., Parrinello, M., J. Phys. Condens. Matter 21, 255501 (2009).CrossRefGoogle Scholar
Volker, H., Jost, P., Wuttig, M., Adv. Funct. Mater., published online June 10, 2015, Scholar
Zhang, W., Thiess, A., Zalden, P., Zeller, R., Dederichs, P.H., Raty, J.Y., Wuttig, M., Blügel, S., Mazzarello, R., Nat. Mater. 11, 952 (2012).CrossRefGoogle Scholar
Caravati, S., Bernasconi, M., Kühne, T.D., Krack, M., Parrinello, M., Appl. Phys. Lett. 91, 171906 (2007).CrossRefGoogle Scholar
Akola, J., Jones, R., Phys. Rev. B 76, 235201 (2007).CrossRefGoogle Scholar
Hegedüs, J., Elliott, S.R., Nat. Mater. 7, 399 (2008).CrossRefGoogle Scholar
Akola, J., Jones, R., Phys. Rev. B 79, 134118 (2009).CrossRefGoogle Scholar
Xu, M., Cheng, Y.Q., Wang, L., Sheng, H.W., Meng, Y., Yang, W.G., Han, X.D., Ma, E., Proc. Natl. Acad. Sci. U.S.A. 109, E1055 (2012).CrossRefGoogle Scholar
Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., Uruga, T., Nat. Mater. 3, 703 (2004).CrossRefGoogle Scholar
Xu, M., Cheng, Y., Sheng, H., Ma, E., Phys. Rev. Lett. 103, 195502 (2009).CrossRefGoogle Scholar
Mazzarello, R., Caravati, S., Angioletti-Uberti, S., Bernasconi, M., Parrinello, M., Phys. Rev. Lett. 104, 085503 (2010).CrossRefGoogle Scholar
Micoulaut, M., Raty, J.Y., Otjacques, C., Bichara, C., Phys. Rev. B 81, 174206 (2010).CrossRefGoogle Scholar
Cho, E., Im, J., Park, C., Son, W.J., Kim, D.H., Horii, H., Ihm, J., Han, S., J. Phys. Condens. Matter 22, 205504 (2010).CrossRefGoogle Scholar
Cai, B., Drabold, D.A., Elliott, S.R., Appl. Phys. Lett. 97, 191908 (2010).CrossRefGoogle Scholar
Kolobov, A.V., Krbal, M., Fons, P., Tominaga, J., Uruga, T., Nat. Chem. 3, 311 (2011).CrossRefGoogle Scholar
Li, X.-B., Liu, X.Q., Liu, X., Han, D., Zhang, Z., Han, X.D., Sun, H.-B., Zhang, S.B., Phys. Rev. Lett. 107, 015501 (2011).CrossRefGoogle Scholar
Micoulaut, M., Kachmar, A., Charpentier, T., Phys. Status Solidi B 249, 1890 (2012).CrossRefGoogle Scholar
Krbal, M., Kolobov, A.V., Fons, P., Mitrofanov, K.V., Tamenori, Y., Hegedüs, J., Elliott, S.R., Tominaga, J., Appl. Phys. Lett. 102, 111904 (2013).CrossRefGoogle Scholar
Mitrofanov, K.V., Kolobov, A.V., Fons, P., Wang, X., Tominaga, J., Tamenori, Y., Uruga, T., Ciocchini, N., Ielmini, D., J. Appl. Phys. 115, 173501 (2014).CrossRefGoogle Scholar
Deringer, V.L., Zhang, W., Lumeij, M., Maintz, S., Wuttig, M., Mazzarello, R., Dronskowski, R., Angew. Chem. Int. Ed. 53, 10817 (2014).CrossRefGoogle Scholar
Deringer, V.L., Tchougréeff, A.L., Dronskowski, R., J. Phys. Chem. A 115, 5461 (2011).CrossRefGoogle Scholar
Maintz, S., Deringer, V.L., Tchougréeff, A.L., Dronskowski, R., J. Comput. Chem. 34, 2557 (2013).CrossRefGoogle Scholar
Raty, J.-Y., Zhang, W., Luckas, J., Chen, C., Bichara, C., Mazzarello, R., Wuttig, M., Nat. Commun. 6, 7467 (2015).CrossRefGoogle Scholar
Wong, H.-S. P., Raoux, S., Kim, S.B., Liang, J., Reifenberg, J.P., Rajendran, B., Asheghi, M., Goodson, K.E., Proc. IEEE 98, 2201 (2010).CrossRefGoogle Scholar
Ielmini, D., Lacaita, A.L., Mantegazza, D., IEEE Trans. Electron Devices 54, 308 (2007).CrossRefGoogle Scholar
Fantini, P., Brazzelli, S., Cazzini, E., Mani, A., Appl. Phys. Lett. 100, 013505 (2012).CrossRefGoogle Scholar
Krebs, D., Bachmann, T., Jonnalagadda, P., Dellmann, L., Raoux, S., New J. Phys. 16, 043015 (2014).CrossRefGoogle Scholar
Kalikka, J., Akola, J., Jones, R.O., Phys. Rev. B 90, 184109 (2014).CrossRefGoogle Scholar
Zhang, W., Ronneberger, I., Zalden, P., Xu, M., Salinga, M., Wuttig, M., Mazzarello, R., Sci. Rep. 4, 6529 (2014).CrossRefGoogle Scholar
Meinders, E.R., Mijiritskii, A.V., van Pieterson, L., Wuttig, M., Optical Data Storage: Phase-Change Media and Recording (Springer, Dordrecht, The Netherlands, 2006).CrossRefGoogle Scholar
Lee, T.H., Elliott, S.R., Phys. Rev. Lett. 107, 145702 (2011).CrossRefGoogle Scholar
Kalikka, J., Akola, J., Larrucea, J., Jones, R.O., Phys. Rev. B 86, 144113 (2012).CrossRefGoogle Scholar
Ronneberger, I., Zhang, W., Eshet, H., Mazzarello, R., Adv. Funct. Mater., published online May 5, 2015, Scholar
Laio, A., Parrinello, M., Proc. Natl. Acad. Sci. U.S.A. 99, 12562 (2002).CrossRefGoogle Scholar
Sebastian, A., Le Gallo, M., Krebs, D., Nat. Commun. 5, 4314 (2014).CrossRefGoogle Scholar
Orava, J., Greer, A.L., Gholipour, B., Hewak, D.W., Smith, C.E., Nat. Mater. 11, 279 (2012).CrossRefGoogle Scholar
Jeyasingh, R., Fong, S.W., Lee, J., Li, Z., Chang, K.W., Mantegazza, D., Asheghi, M., Goodson, K.E., Wong, H.S., Nano Lett. 14, 3419 (2014).CrossRefGoogle Scholar
Sun, Z., Zhou, J., Ahuja, R., Phys. Rev. Lett. 96, 055507 (2006).CrossRefGoogle Scholar
Da Silva, J., Walsh, A., Lee, H., Phys. Rev. B 78, 224111 (2008).CrossRefGoogle Scholar
Pauly, C., Liebmann, M., Giussani, A., Kellner, J., Just, S., Sánchez-Barriga, J., Rienks, E., Rader, O., Calarco, R., Bihlmayer, G., Morgenstern, M., Appl. Phys. Lett. 103, 243109 (2013).CrossRefGoogle Scholar
Loke, D., Lee, T.H., Wang, W.J., Shi, L.P., Zhao, R., Yeo, Y.C., Chong, T.C., Elliott, S.R., Science 336, 1566 (2012).CrossRefGoogle Scholar
Sosso, G.C., Miceli, G., Caravati, S., Behler, J., Bernasconi, M., Phys. Rev. B 85, 174103 (2012).CrossRefGoogle Scholar
Sosso, G., Miceli, G., Caravati, S., Giberti, F., Behler, J., Bernasconi, M., J. Phys. Chem. Lett. 4, 4241 (2013).CrossRefGoogle Scholar
Sosso, G., Colombo, J., Behler, J., Del Gado, E., Bernasconi, M., J. Phys. Chem. B 118, 13621 (2014).CrossRefGoogle Scholar
Matsunaga, T., Akola, J., Kohara, S., Honma, T., Kobayashi, K., Ikenaga, E., Jones, R.O., Yamada, N., Takata, M., Kojima, R., Nat. Mater. 10, 129 (2011).CrossRefGoogle Scholar
Salinga, M., Carria, E., Kaldenbach, A., Bornhofft, M., Benke, J., Mayer, J., Wuttig, M., Nat. Commun. 4, 2371 (2013).CrossRefGoogle Scholar
Debenedetti, P.G., Stillinger, F.H., Nature 410, 259 (2001).CrossRefGoogle Scholar
Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., Zhang, S.-C., Nat. Phys. 5, 438 (2009).CrossRefGoogle Scholar
Hasan, M.Z., Kane, C.L., Rev. Mod. Phys. 82, 3045 (2010).CrossRefGoogle Scholar
Kim, J., Kim, J., Jhi, S.-H., Phys. Rev. B 82, 201312(R) (2010).CrossRefGoogle Scholar
Simpson, R.E., Fons, P., Kolobov, A.V., Fukaya, T., Krbal, M., Yagi, T., Tominaga, J., Nat. Nanotechnol. 6, 501 (2011).CrossRefGoogle Scholar
Tominaga, J., Kolobov, A.V., Fons, P., Nakano, T., Murakami, S., Adv. Mater. Interfaces 1, 1300027 (2014).CrossRefGoogle Scholar
Sa, B., Zhou, J., Sun, Z., Tominaga, J., Ahuja, R., Phys. Rev. Lett. 109, 096802 (2012).CrossRefGoogle Scholar
Prasai, B., Kordesch, M.E., Drabold, D.A., Chen, G., Phys. Status Solidi B 250, 1785 (2013).CrossRefGoogle Scholar
Skelton, J.M., Pallipurath, A.R., Lee, T.-H., Elliott, S.R., Adv. Funct. Mater. 24, 7291 (2014).CrossRefGoogle Scholar
Zhu, M., Xia, M., Rao, F., Li, X., Wu, L., Ji, X., Lv, S., Song, Z., Feng, S., Sun, H., Zhang, S., Nat. Commun. 5, 4086 (2014).CrossRefGoogle Scholar
Song, W.-D., Shi, L.-P., Miao, X.-S., Chong, C.-T., Adv. Mater. 20, 2394 (2008).CrossRefGoogle Scholar
Ding, D., Bai, K., Song, W.D., Shi, L.P., Zhao, R., Ji, R., Sullivan, M., Wu, P., Phys. Rev. B 84, 214416 (2011).CrossRefGoogle Scholar
Zhang, W., Ronneberger, I., Li, Y., Mazzarello, R., Adv. Mater. 24, 4387 (2012).CrossRefGoogle Scholar
Skelton, J.M., Elliott, S.R., J. Phys. Condens. Matter 25, 205801 (2013).CrossRefGoogle Scholar
Greer, A.L., Nat. Mater. 14, 542 (2015).CrossRefGoogle Scholar
Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K., Nature 490, 192 (2012).CrossRefGoogle Scholar
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Nat. Nanotechnol. 7, 699 (2012).CrossRefGoogle Scholar
Hickel, T., Dick, A., Grabowski, B., Körmann, F., Neugebauer, J., Steel Res. Int. 80, 4 (2010).Google Scholar
Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., Hosono, H., Nature 432, 488 (2004).CrossRefGoogle Scholar