Hostname: page-component-f7d5f74f5-4fqgl Total loading time: 0 Render date: 2023-10-05T01:40:41.286Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Hybrid Organic–Nanocrystal Solar Cells

Published online by Cambridge University Press:  31 January 2011

Get access


Recent results have demonstrated that hybrid photovoltaic cells based on a blend of inorganic nanocrystals and polymers possess significant potential for low-cost, scalable solar power conversion. Colloidal semiconductor nanocrystals, like polymers, are solution processable and chemically synthesized, but possess the advantageous properties of inorganic semiconductors such as a broad spectral absorption range and high carrier mobilities. Significant advances in hybrid solar cells have followed the development of elongated nanocrystal rods and branched nanocrystals, which enable more effective charge transport. The incorporation of these larger nanostructures into polymers has required optimization of blend morphology using solvent mixtures. Future advances will rely on new nanocrystals, such as cadmium telluride tetrapods, that have the potential to enhance light absorption and further improve charge transport. Gains can also be made by incorporating application-specific organic components, including electroactive surfactants which control the physical and electronic interactions between nanocrystals and polymer.

Research Article
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Yu, G. and Heeger, A.J., J. Appl. Phys. 78 (1995) p. 4510.CrossRefGoogle Scholar
2.Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C., and Holmes, A.B., Nature 376 (1995) p. 498.CrossRefGoogle Scholar
3.Yu, G., Gao, J., Hummelen, J.C., Wudl, F., and Heeger, A.J., Science 270 (1995) p. 1789.CrossRefGoogle Scholar
4.Tang, C.W., Appl. Phys. Lett. 48 (1986) p. 183.CrossRefGoogle Scholar
5.Peumans, P., Uchida, S., and Forrest, S.R., Nature 425 (2003) p. 158.CrossRefGoogle Scholar
6.Padinger, F., Rittberger, R.S., and Sariciftci, N., Adv. Funct. Mater. 13 (2003) p. 85.CrossRefGoogle Scholar
7.Alivisatos, A.P., Science 271 (1996) p. 933.CrossRefGoogle Scholar
8.Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115 (1993) p. 8706.CrossRefGoogle Scholar
9.Peng, X., Manna, L., Yang, W., Wickham, J., Kadavanich, A., and Alivisatos, A.P., Nature 404 (2000) p. 59.CrossRefGoogle Scholar
10.Manna, L.E., Scher, E.C., and Alivisatos, A.P., J. Am. Chem. Soc. 122 (2000) p. 12700.CrossRefGoogle Scholar
11.Bawendi, M., Steigerwald, M.L., and Brus, L.E., Annu. Rev. Phys. Chem. 41 (1990) p. 477.CrossRefGoogle Scholar
12.Li, L., Hu, J., Yang, W., and Alivisatos, A.P., Nano Lett. 1 (2001) p. 349.CrossRefGoogle Scholar
13.Yu, W.W., Qu, L., Guo, W., and Peng, X., Chem. Mater. 15 (2003) p. 2854.CrossRefGoogle Scholar
14.Green, M.A., Prog. Photovoltaics 9 (2001) p. 137.CrossRefGoogle Scholar
15.Greenham, N.C., Peng, X., and Alivisatos, A.P., Phys. Rev. B 54 (1996) p. 17628.CrossRefGoogle Scholar
16.Ginger, D.S. and Greenham, N.C., Synth. Met. 101 (1999) p. 425.CrossRefGoogle Scholar
17.Huynh, W.U., Peng, X., and Alivisatos, A.P., Adv. Mater. 11 (1999) p. 923.3.0.CO;2-T>CrossRefGoogle Scholar
18.Arias, A.C., MacKenzie, J.D., Stevenson, R., Halls, J.J.M., Inbasekaran, M., Woo, E.P., Richards, D., and Friend, R.H., Macromolecules 34 (2001) p. 6005.CrossRefGoogle Scholar
19.Huynh, W.U., Dittmer, J.J., Libby, W.C., Whiting, G.L., and Alivisatos, A.P., Adv. Funct. Mater. 13 (2003) p. 73.CrossRefGoogle Scholar
20.Cui, Y., Zhong, Z., Wang, W.U., and Lieber, C.M., Nano Lett. 3 (2003) p. 149.CrossRefGoogle Scholar
21.Ginger, D.S. and Greenham, N.C., Synth. Met. 124 (2001) p. 117.CrossRefGoogle Scholar
22.Huynh, W.U., Dittmer, J.J., and Alivisatos, A.P., Science 295 (2002) p. 2425.CrossRefGoogle Scholar
23.Sun, B.E., Marx, E., and Greenham, N.C., Nano Lett. 3 (2003) p. 961.CrossRefGoogle Scholar
24.Manna, L., Milliron, D.J., Meisel, A., Scher, E.C., and Alivisatos, A.P., Nature Mater. 2 (2003) p. 382.CrossRefGoogle Scholar
25.Arici, E., Sariciftci, N.S., and Meissner, D., Adv. Funct. Mater. 13 (2003) p. 165.CrossRefGoogle Scholar
26.Milliron, D.J., Alivisatos, A.P., Pitois, C., Edder, C., and Frechet, J.M.J., Adv. Mater. 15 (2003) p. 58.CrossRefGoogle Scholar