Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-25T13:49:37.326Z Has data issue: false hasContentIssue false

Lithium-air and lithium-sulfur batteries

Published online by Cambridge University Press:  14 July 2011

Peter G. Bruce
School of Chemistry, University of St. Andrews, UK;
Laurence J. Hardwick
School of Chemistry, University of St. Andrews, UK;
K.M. Abraham
Northeastern University Center for Renewable Energy Technologies, Boston, MA;
Get access


Reducing our dependence on fossil fuels increases the demand for energy storage. Lithium-ion batteries have transformed portable electronics and will continue to be important but cannot deliver the step change in energy density required in the longer term in markets such as electric vehicles and the storage of electricity from renewables. There are a few alternatives. Here we describe two: Li-air and Li-sulfur batteries. We compare the energy densities of Li-ion, Li-air, and Li-S and discuss their differences and the challenges facing Li-air and Li-S, many of which are materials related.

Research Article
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., Wilcke, W., J. Phys. Chem. Lett. 1, 2193 (2010).CrossRefGoogle Scholar
2.Ji, X., Nazar, L.F., J. Mater. Chem. 20, 9821 (2010).CrossRefGoogle Scholar
3.Kraytsberg, A., Ein-Eli, Y., J. Power Sources 196, 886 (2011).CrossRefGoogle Scholar
4.Lee, J.-S., Kim, S.T., Cao, R., Choi, N.-S., Liu, M., Lee, K.T., Cho, J., Adv. Energy. Mater. 1, 34 (2011).CrossRefGoogle Scholar
5.Abraham, K.M., Jiang, Z., J. Electrochem. Soc. 143, 1 (1996).CrossRefGoogle Scholar
6.Laoire, C.Ó., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., J. Electrochem. Soc. 158, A302 (2011).CrossRefGoogle Scholar
7.Ogasawara, T., Débart, A., Holzapfel, M., Novák, P., Bruce, P.G., J. Am. Chem. Soc. 128, 1390 (2006).CrossRefGoogle Scholar
8.Visco, S.J., Katz, B.D., Nimon, Y.S., DeJonghe, L.D., U.S. Patent 7,282,295 (2007).Google Scholar
9.Débart, A., Paterson, A.J., Bao, J., Bruce, P.G., Angew. Chem. Int. Ed. 47, 4521 (2008).CrossRefGoogle Scholar
10.Lu, Y.-C.. Gasteiger, H.A., Crumlin, E., McGuire, R., Shao-Horn, Y., J. Am. Chem. Soc. 132, 12170 (2010).CrossRefGoogle Scholar
11.Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., J. Phys. Chem. C 113, 20127 (2009).CrossRefGoogle Scholar
12.Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., J. Phys. Chem. C 114, 9178 (2010).CrossRefGoogle Scholar
13.Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S., Iba, H., Electrochemistry 78, 403 (2010).CrossRefGoogle Scholar
14.Freunberger, S.A., Hardwick, L.J., Peng, Z., Giordani, V., Chen, Y., Maire, P., Novák, P., Tarascon, J.-M., Bruce, P.G., Meet. Abstr. Electrochem. Soc. 1003, 830 (2010).CrossRefGoogle Scholar
15.Freunberger, S.A., Chen, Y., Peng, Z., Griffin, J.M., Hardwick, L.J., Barde, F., Novak, P., Bruce, P.G., J. Am. Chem. Soc., 133, 8040 (2011).CrossRefGoogle Scholar
16.Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., Wilcke, W., J. Phys. Chem. Lett. 1, 2193 (2010).CrossRefGoogle Scholar
17.Zhang, J., Xu, W., Liu, W., J. Power Sources, 195 7438 (2010).CrossRefGoogle Scholar
18.Zhang, G.Q., Zheng, J.P., Liang, R., Zhang, C., Wang, B., Hendrickson, M., Plichta, E.J., J. Electrochem. Soc. 157, A953 (2010).CrossRefGoogle Scholar
19.Yang, X.-H., He, P., Xia, Y.-Y., Electrochem. Commun. 11, 1127 (2009).CrossRefGoogle Scholar
20.Xu, W., Xiao, J., Wang, D., Zhang, J., Zhang, J.-G., Electrochem. Solid-State Lett. 13, A48 (2010).CrossRefGoogle Scholar
21.Read, J., J. Electrochem. Soc. 149, A1190 (2002).CrossRefGoogle Scholar
22.Read, J., Mutolo, K., Ervin, M., Behl, W., Wolfenstine, J., Driedger, A., Foster, D.J. Electrochem. Soc. 150, A1351 (2003).CrossRefGoogle Scholar
23.Zhang, J.A., Xu, W., Liu, W., J. Power Sources 195, 7438 (2010).CrossRefGoogle Scholar
24.Abraham, K.M., Brummer, S.B., in Lithium Batteries, Gabano, J.P., Ed. (Academic Press, London, 1983).Google Scholar
25.Imanishi, N., Hasegawa, S., Zhang, T., Hirano, A., Takeda, Y., Yamamoto, O., J. Power Sources 185, 1392 (2008).CrossRefGoogle Scholar
26.Zhang, T., Imanishi, N., Shimonishi, Y., Hirano, A., Xie, J., Takeda, Y., Yamamoto, O., Sammes, N., J. Electrochem Soc. 157, A214 (2010).CrossRefGoogle Scholar
27.Hasegawa, S., Imanishi, N., Zhang, T., Xie, J., Hirano, A., Takeda, Y., Yamamoto, O., J. Power Sources 189, 371 (2009).CrossRefGoogle Scholar
28.Stevens, P., Toussaint, G., Caillon, G., Viaud, P., Vinatier, P., Cantau, C., Fichet, O., Sarrazindan, C., Mallouki, M., ESC Trans. 28, 1 (2010).Google Scholar
29.Herbert, D., Ulam, J., U.S. Patent3043896 (1962).Google Scholar
30.Rauh, R.D., Abraham, K.M., Pearson, G.F., Surprenant, J.K., Brummer, S.B.J. Electrochem. Soc. 126, 523 (1979).CrossRefGoogle Scholar
31.Kaun, T.D., Nelson, P.A., Redey, L., Vissers, D.R., Henriksen, G.L., Electrochim. Acta 38, 126 (1993).CrossRefGoogle Scholar
32.Abraham, K.M., Rauh, R.D., Brummer, S.B., Electrochim. Acta 23, 501 (1978).CrossRefGoogle Scholar
33.Yao, Y.F.Y., Kummer, J.T., J. Inorg. Nucl. Chem. 29, 2453 (1967).Google Scholar
34.Kummer, J.T., Weber, N., Proc. Power Sources Conf. 37 (1967).Google Scholar
35.Rauh, R.D., Shuker, F.S., Marston, J.M., Brummer, S.B., J. Inorg. Nucl. Chem. 39, 1761 (1977).CrossRefGoogle Scholar
36.Rauh, R.D., Pearson, G.F., Brumner, S.B., Proc. 12th IECEC (1997), pp. 283.Google Scholar
37.Ryu, H.-S., Ahn, H.-J., Kim, K.-W., Ahn, J.-H., Cho, K.-K., Nam, T.-H., Kim, J.-U., Cho, G.-B., J. Power Sources 201, 163 (2006).Google Scholar
38.Chu, M.-Y., U.S. Patent 5,686,201 (1997).Google Scholar
39.Yuan, L.X., Feng, J.K., Ai, X.P., Cao, Y.L., Chen, S.L., Yang, H.X., Electrochem. Commun. 8, 610 (2006).CrossRefGoogle Scholar
40.Wang, J., Chew, S.Y., Zhao, Z.W., Ashraf, S., Wexler, D., Chen, J., Ng, S.H., Chou, S.L., Liu, H.K., Carbon 46, 229 (2008).CrossRefGoogle Scholar
41.Shin, J.H., Cairns, E.J., J. Power Sources 177, 537 (2008).CrossRefGoogle Scholar
42.Shin, J.H., Cairns, E.J., J. Electrochem. Soc. 155, A368 (2008).CrossRefGoogle Scholar
43.Aurbach, D., Pollak, E., Elazari, R., Salitra, G., Kelley, C.S., Affinito, J., J. Electrochem. Soc. 156, A694 (2009).CrossRefGoogle Scholar
44.Mercier, R., Malugani, J.-P., Fahys, B., Robert, G., Solid State Ionics 5, 663 (1981).CrossRefGoogle Scholar
45.Pradel, A., Ribes, M., Solid State Ionics 18/19, 351 (1986).CrossRefGoogle Scholar
46.Hayashi, A., Ohtsubo, R., Ohtomo, T., Mizuno, F., Tatsumisago, M., J. Power Sources 183, 422 (2008).CrossRefGoogle Scholar
47.Visco, S.J., Chu, M.Y., U.S. Patent 6,210,832 (2001).Google Scholar
48.Zheng, W., Liu, Y.W., Hu, X.G., Zhang, C.F., Electrochim. Acta 51, 1330 (2006).CrossRefGoogle Scholar
49.Yuan, L., Yuan, H., Qiu, X., Chen, L., Zhu, W., J. Power Sources 189, 1141 (2009).CrossRefGoogle Scholar
50.Ji, X.L., Lee, K.T., Nazar, L.F., Nat. Mater. 8, 500 (2009).CrossRefGoogle Scholar