Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T18:45:28.624Z Has data issue: false hasContentIssue false

Materials for neural interfaces

Published online by Cambridge University Press:  08 June 2012

Ravi V. Bellamkonda
Affiliation:
Georgia Institute of Technology, Atlanta; ravi@gatech.edu
S. Balakrishna Pai
Affiliation:
Georgia Institute of Technology, Atlanta; balakrishna.pai@bme.gatech.edu
Philippe Renaud
Affiliation:
Microsystems Laboratory, Switzerland; Philippe.renaud@epfl.ch
Get access

Abstract

The treatment of disorders of the nervous system poses a major clinical challenge. Development of neuromodulation (i.e., interfacing electronics to nervous tissue to modulate its function) has provided patients with neuronal-related deficits a new tool to regain lost function. Even though, in principle, electrical stimulation and recording by interfacing technology is simple and straightforward, each presents different challenges. In stimulation, the challenge lies in targeting the effects of stimulation on precise brain regions, as each region specializes for particular functions on a millimeter scale. In practice, our experience with deep brain stimulation for treating Parkinson’s disease reveals that stimulation of larger regions of the brain can be relatively well tolerated. However, the task of fabricating an ideal electrode that performs reliably for long periods of time has been daunting. The primary obstacle in successful interfacing comes from integration of electrodes (“foreign” material) into the nervous system (biological material). The second tier of complexity is added by the need for the electrodes to “sense” signals emanating from individual neurons, an estimated microenvironment of 10 to 20 microns in diameter. Materials design and technology impact electrode design—with their size, shape, mechanical properties, and composition all being actively optimized to enable chronic, stable recordings of neural activity. The articles in this issue discuss designing interfacing technology to “listen to the nervous system” from a materials perspective. These include identification of materials with a potential for in vivo development, electrodes with various material types, including natural nanocomposites, and optical neural interfacing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mussa-Ivaldi, F.A., Miller, L.E., Trends Neurosci. 26 (6), 329 (2003).CrossRefGoogle Scholar
2.Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A., Nat. Neurosci. 2 (7), 664 (1999).CrossRefGoogle Scholar
3.Loeb, G.E., Annu. Rev. Neurosci. 13, 357 (1990).CrossRefGoogle Scholar
4.National Institute on Deafness and Other Communication Disorders, http://www.nidcd.nih.gov/health/hearing/pages/coch.aspx.Google Scholar
5.Bak, M., Girvin, J.P., Hambrecht, F.T., Kufta, C.V., Loeb, G.E., Schmidt, E.M., Med. Biol. Eng. Comput. 28 (3), 257 (1990).CrossRefGoogle Scholar
6.Normann, R.A., Maynard, E.M., Rousche, P.J., Warren, D.J., Vision Res. 39 (15), 2577 (1999).CrossRefGoogle Scholar
7.Zrenner, E., Science 295 (5557), 1022 (2002).CrossRefGoogle Scholar
8.Green, R.A., Lovell, N.H., Wallace, G.G., Poole-Warren, L.A., Biomaterials 29 (24–25), 3393 (2008).CrossRefGoogle Scholar
9.Grill, W.M., Norman, S.E., Bellamkonda, R.V., Annu. Rev. Biomed. Eng. 11, 1 (2009).CrossRefGoogle Scholar
10.Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F.Patil, P.G., Henriquez, C.S., Nicolelis, M.A., PLoS Biol. 1 (2), E42 (2003).CrossRefGoogle Scholar
11.Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., Donoghue, J.P., Nature 442 (7099), 164 (2006).CrossRefGoogle Scholar
12.Lebedev, M.A., Carmena, J.M., O’Doherty, J.E., Zacksenhouse, M., Henriquez, C.S., Principe, J.C., Nicolelis, M.A., J. Neurosci. 25 (19), 4681 (2005).CrossRefGoogle Scholar
13.McConnell, G.C., Rees, H.D., Levey, A.I., Gutekunst, C.A., Gross, R.E., Bellamkonda, R.V., J. Neural Eng. 6 (5), 056003 (2009).CrossRefGoogle Scholar
14.Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P., Nature 416 (6877), 141 (2002).CrossRefGoogle Scholar
15.Taylor, D.M., Tillery, S.I., Schwartz, A.B., Science 296 (5574), 1829 (2002).CrossRefGoogle Scholar
16.Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Bigg, S.J.. Srinivasan, M.A., Nicolelis, M.A., Nature 408 (6810), 361 (2000).CrossRefGoogle Scholar
17.He, W., Bellamkonda, R., in Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment, Reichert, W.M., Ed. (CRC Press, Boca Raton, FL, 2008), chap. 6.Google Scholar
18.Block, M.L., Hong, J.S., Prog. Neurobiol. 76 (2), 77 (2005).CrossRefGoogle Scholar
19.Discher, D.E., Janmey, P., Wang, Y.L., Science 310 (5751), 1139 (2005).CrossRefGoogle Scholar
20.Griffith, R.W., Humphrey, D.R., Neurosci. Lett. 406 (1–2), 81 (2006).CrossRefGoogle Scholar
21.He, W., McConnell, G.C., Bellamkonda, R.V., J. Neural Eng. 3 (4), 316 (2006).CrossRefGoogle Scholar
22.Kim, Y.T., Hitchcock, R.W., Bridge, M.J., Tresco, P.A., Biomaterials 25 (12), 2229 (2004).CrossRefGoogle Scholar
23.McConnell, G.C., Schneider, T.M., Owens, D.J., Bellamkonda, R.V., IEEE Trans. Biomed. Eng. 54 (6 Pt. 1), 1097 (2007).CrossRefGoogle Scholar
24.Polikov, V.S., Block, M.L., Fellous, J.M., Hong, J.S., Reichert, W.M., Biomaterials 27 (31), 5368 (2006).CrossRefGoogle Scholar
25.Szarowski, D.H., Andersen, M.D., Retterer, S., Spence, A.J., Isaacson, M., Craighead, H.G., Turner, J.N., Shain, W., Brain Res. 983 (1–2), 23 (2003).CrossRefGoogle Scholar
26.Turner, J.N., Shain, W., Szarowski, D.H., Andersen, M., Martins, S., Isaacson, M., Craighead, H., Exp. Neurol. 156 (1), 33 (1999).CrossRefGoogle Scholar
27.Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S., Schwartz, A.B., Nature 453 (7198), 1098 (2008).CrossRefGoogle Scholar
28.Capadona, J.R., Shanmuganathan, K., Tyler, D.J., Rowan, S.J., Weder, C., Science 319 (5868), 1370 (2008).CrossRefGoogle Scholar