Hostname: page-component-758b78586c-wkjwp Total loading time: 0 Render date: 2023-11-29T09:22:50.373Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Molecular Design of Inorganic-Binding Polypeptides

Published online by Cambridge University Press:  31 January 2011

Get access


Controlled binding and assembly of peptides onto inorganic substrates is at the core of bionanotechnology and biological-materials engineering. Peptides offer several unique advantages for developing future inorganic materials and systems. First, engineered polypeptides can molecularly recognize inorganic surfaces that are distinguishable by shape, crystallography, mineralogy, and chemistry. Second, polypeptides are capable of self-assembly on specific material surfaces leading to addressable molecular architectures. Finally, genetically engineered peptides offer multiple strategies for their functional modification. In this article, we summarize the details and mechanisms involved in combinatorial-polypeptide sequence selection and inorganic-material recognition and affinity, and outline experimental and theoretical approaches and concepts that will help advance this emerging field.

Research Article
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Smith, G.P., Science 228, 1315 (1985).Google Scholar
2.Wittrup, K.D., Curr. Opin. Biotechnol. 12, 395 (2001).Google Scholar
3.Amstutz, P., Forrer, P., Zahnd, C., Plückthun, A., Curr. Opin. Biotechnol. 12, 400 (2001).Google Scholar
4.Brown, S., Nat. Biotechnol. 15, 269 (1997).Google Scholar
5.Schembri, M., Kjaergaard, K., Klemm, P., FEMS Microbiol. Lett. 170, 363 (1999).Google Scholar
6.Brown, S., Sarikaya, M., Johnson, E., J. Mol. Biol. 299, 725 (2000).Google Scholar
7.Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., Belcher, A.M., Nature 405, 665 (2000).Google Scholar
8.Naik, R.R., Stringer, S.J., Agarwal, G., Jones, S.E., Stone, M.O., Nat. Mater. 1, 169 (2002).Google Scholar
9.Li, C.M., Botsaris, G.D., Kaplan, D.L., Cryst. Growth Des. 2, 387 (2002).Google Scholar
10.Sarikaya, M., Tamerler, C., Jen, A.K.Y., Schulten, K., Baneyx, F., Nat. Mater. 2, 577 (2003).Google Scholar
11.Thai, C.K., Dai, H.X., Sastry, M.S.R., Sarikaya, M., Schwartz, D.T., Baneyx, F., Biotechnol. Bioeng. 87, 129 (2004).Google Scholar
12.Umetsu, M., Mizuta, M., Tsumoto, K., Ohara, K., Takami, S., Watanabe, S., Kumagai, H., Adschiri, I., T. Adv. Mater. 17, 2571 (2005).Google Scholar
13.Sano, K.I., Sasaki, H., Shiba, K., Langmuir 21, 3090 (2005).Google Scholar
14.Seker, O.U.S., Wilson, B., Dincer, S., Kim, I.W., Oren, E.E., Evans, J.S., Tamerler, C., Sarikaya, M., Langmuir 23, 7895 (2007).Google Scholar
15.Sarikaya, M., Tamerler, C., Schwartz, D.T., Baneyx, F., Ann. Rev. Mat. Res. 34, 373 (2004).Google Scholar
16.Tamerler, C., Oren, E.E., Duman, M., Venkatasubramanian, E., Sarikaya, M.Langmuir 22 (18), 7712 (2006).Google Scholar
17.Kulp, L. III, Sarikaya, M., Evans, J.S., J. Mater. Chem. 14, 2325 (2004).Google Scholar
18.Oren, E.E., Tamerler, C., Sarikaya, M., Nano Lett. 5, 415 (2005).Google Scholar
19.Kulp, J.L. III, Shiba, K., Evans, J.S., Langmuir 21, 11907 (2005).Google Scholar
20.Gungormus, M., Fong, H., Kim, I.W., Evans, J.S., Tamerler, C., Sarikaya, M., Biomacromole-cules 9, 966 (2008).Google Scholar
21.Evans, J.S., Curr. Opin. Colloid Interface Sci. 8, 48 (2003).Google Scholar
22.Collino, S., Evans, J.S., Biomacromolecules 8, 1686 (2007).Google Scholar
23.Kim, I.W., Collino, S., Morse, D.E., Evans, J.S., Cryst. Growth Des. 6, 1078 (2006).Google Scholar
24.Collino, S., Kim, I.W., Evans, J.S., Cryst. Growth Des. 6, 839 (2006).Google Scholar
25.Wales, D.J., Miller, M.A., Walsh, T.R., Nature 394, 758 (1998).Google Scholar
26.Wales, D.J., “Energy Landscapes,” Cambridge University Press (Cambridge) (2003).Google Scholar
27.Foloppe, N. and Mackerell, A.D., J. Comput. Chem., 21, 86 (2000).Google Scholar
28.Wang, J., Cieplak, P. and Kollman, P.A., J. Comput. Chem., 21, 1049 (2000).Google Scholar
29.Bandura, A.V. and Kubicki, J.D., J. Phys. Chem. B., 107, 11072 (2003).Google Scholar
30.Mahadevan, T.S. and Garofalini, S.H., J. Phys. Chem. C, 112, 1507 (2008).Google Scholar
31.Freeman, C.L., Harding, J.H., Cooke, D.J., Elliott, J.A., Lardge, J.S., Duffy, D.M., J. Phys. Chem. C 111, 11943 (2007).Google Scholar
32.Tomasio, S.D., Walsh, T.R., Mol. Phys. 105, 221 (2007).Google Scholar
33.Bachmann, M. and Janke, W., Phys. Rev. Lett., 95, 058102 (2006).Google Scholar
34.Biggs, M.J. and Mijajlovic, M., J. Phys. Chem. C, 111, 15839 (2007).Google Scholar
35.Carravetta, V. and Monti, S., J. Phys. Chem. B, 110, 6160 (2006).Google Scholar
36.Schrevandijk, P., Ghiringhelli, L.M., Delle Site, L., van der Vegt, N.F.A., J. Phys. Chem. C 111, 2631 (2007).Google Scholar
37.Oren, E.E., Tamerler, C., Sahin, D., Hnilova, M., Seker, U.O.S., Sarikaya, M., Samudrala, R., Bioinformatics 23, 2816 (2007).Google Scholar
38.Attwood, T.K., Science 27, 471 (2000).Google Scholar
39.Needleman, S.B., Wunsch, C.D., J. Mol. Biol. 48, 443 (1970).Google Scholar
40.Smith, T.F., Waterman, M.S., J. Mol. Biol. 147, 195 (1981).Google Scholar