Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-01T05:18:54.488Z Has data issue: false hasContentIssue false

Photon recycling in halide perovskite solar cells for higher efficiencies

Published online by Cambridge University Press:  16 June 2020

Seungmin Lee
Affiliation:
School of Civil, Environmental and Architectural Engineering, Korea University, South Korea; meant9043@korea.ac.kr
Kwang Choi
Affiliation:
School of Civil, Environmental and Architectural Engineering, Korea University, South Korea; qscwdv489@korea.ac.kr
Chang Ha Min
Affiliation:
School of Civil, Environmental and Architectural Engineering, Korea University, South Korea; kcdmin123@korea.ac.kr
Mun Young Woo
Affiliation:
School of Civil, Environmental and Architectural Engineering, Korea University, South Korea; dnansdud@korea.ac.kr
Jun Hong Noh
Affiliation:
School of Civil, Environmental and Architectural Engineering, Korea University, South Korea; junhnoh@korea.ac.kr
Get access

Abstract

The efficiency of halide perovskite solar cells has progressed rapidly through a series of major breakthroughs. Currently, a certified efficiency of 25.2% has been achieved for a solar cell using a polycrystalline thin film. This is the result of having reached 75% of the Shockley–Queisser limit for single-junction solar cells. However, for further improvements, new breakthrough technologies are required. This article reviews the impact of previous breakthrough technologies on the efficiency of halide perovskite solar cells, based on certified efficiencies. We clarify the current status of halide perovskite solar cells and introduce photon recycling as the next technological innovation for higher efficiencies. Photon recycling keeps the photon concentration inside the light-harvesting layer high, and consequently, leads to open-circuit voltages close to the theoretical value. Although photon recycling has not yet been implemented in real halide perovskite solar cells, three key technologies for implementing it are examined.

Type
Halide Perovskite Opto- and Nanoelectronic Materials and Devices
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart (2019).Google Scholar
Green, M.A., Dunlop, E.D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Ho-Baillie, A.W., Prog. Photovolt. Res. Appl. 28, 3 (2019).Google Scholar
Green, M.A., Prog. Photovolt. Res. Appl. 20, 472 (2012).Google Scholar
Guillemoles, J.-F., Kirchartz, T., Cahen, D., Rau, U., Nat. Photonics 13, 501 (2019).CrossRefGoogle Scholar
Noh, J.H., Seok, S.I., MRS Bull. 40, 648 (2015).CrossRefGoogle Scholar
Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Gratzel, M., Nature 499, 316 (2013).CrossRefGoogle Scholar
Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I., Nat. Mater. 13, 897 (2014).Google Scholar
Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I., Nature 517, 476 (2015).CrossRefGoogle Scholar
Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., S.I. Seok , Science 348, 1234 (2015).Google Scholar
Bi, D., Yi, C., Luo, J., Décoppet, J.-D., Zhang, F., Zakeeruddin, S.M., Li, X., Hagfeldt, A., Grätzel, M., Nat. Energy 1, 1 (2016).CrossRefGoogle Scholar
Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., J.H. Noh , Science 356, 1376 (2017).Google Scholar
Ran, C., Xu, J., Gao, W., Huang, C., Dou, S., Chem. Soc. Rev. 47, 4581 (2018).CrossRefGoogle Scholar
Yu, H., Wang, F., Xie, F., Li, W., Chen, J., Zhao, N., Adv. Funct. Mater. 24, 7102 (2014).Google Scholar
Jung, E.H., Jeon, N.J., Park, E.Y., Moon, C.S., Shin, T.J., Yang, T.-Y., Noh, J.H., Seo, J., Nature 567, 511 (2019).CrossRefGoogle Scholar
Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Li, X., Yin, Z., You, J., Nat. Photonics 13, 460 (2019).Google Scholar
Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.Y., Prog. Photovolt. 27, 3 (2019).Google Scholar
Green, M.A., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W., Prog. Photovolt. Res. Appl. 27, 565 (2019).Google Scholar
Ganapati, V., Steiner, M.A., Yablonovitch, E., IEEE J. Photovolt. 6, 801 (2016).CrossRefGoogle Scholar
Löper, , Stuckelberger, M., Niesen, B., Werner, J., Filipič, M., Moon, S.-J., Yum, J.-H., Topič, M., De Wolf, S., Ballif, C., J. Phys. Chem. Lett. 6, 66 (2014).Google Scholar
Pazos-Outón, L.M., Szumilo, M., Lamboll, R., Richter, J.M., Crespo-Quesada, M., Abdi-Jalebi, M., Beeson, H.J., Vrućinić, M., Alsari, M., Snaith, H.J., Science 351, 1430 (2016).CrossRefGoogle Scholar
Dursun, I., Zheng, Y., Guo, T., De Bastiani, M., Turedi, B., Sinatra, L., Haque, M.A., Sun, B., Zhumekenov, A.A., Saidaminov, M.I., ACS Energy Lett. 3, 1492 (2018).CrossRefGoogle Scholar
Fang, Y., Wei, H., Dong, Q., Huang, J., Nat. Commun. 8, 14417 (2017).Google Scholar
Gan, Z., Wen, X., Chen, W., Zhou, C., Yang, S., Cao, G., Ghiggino, K.P., Zhang, H., Jia, B., Adv. Energy Mater. 9, 1900185 (2019).CrossRefGoogle Scholar
Kirchartz, T., Staub, F., Rau, U., ACS Energy Lett. 1, 731 (2016).CrossRefGoogle Scholar
Richter, J.M., Abdi-Jalebi, M., Sadhanala, A., Tabachnyk, M., Rivett, J.P., Pazos-Outón, L.M., Gödel, K.C., Price, M., Deschler, F., Friend, R.H., Nat. Commun. 7, 1 (2016).CrossRefGoogle Scholar
Brenes, R., Laitz, M., Jean, J., deQuilettes, D.W., Bulović, V., Phys. Rev. Appl. 12, 014017 (2019).CrossRefGoogle Scholar
Goudon, T., Miljanovic, V., Schmeiser, C., SIAM J. Appl. Math. 67, 1183 (2007).CrossRefGoogle Scholar
Ball, J.M., Petrozza, A., Nat. Energy 1, 1 (2016).CrossRefGoogle Scholar
Wright, A.D., Verdi, C., Milot, R.L., Eperon, G.E., Pérez-Osorio, M.A., Snaith, H.J., Giustino, F., Johnston, M.B., Herz, L.M., Nat. Commun. 7, 1 (2016).Google Scholar
Alnuaimi, A., Almansouri, I., Nayfeh, A., AIP Adv. 6, 115012 (2016).CrossRefGoogle Scholar
Pazos-Outón, L.M., Xiao, T.P., Yablonovitch, E., J. Phys. Chem. Lett. 9, 1703 (2018).CrossRefGoogle Scholar
Braslavsky, S.E., Pure Appl. Chem. 79, 293 (2007).CrossRefGoogle Scholar
Ha, S.-T., Shen, C., Zhang, J., Xiong, Q., Nat. Photonics 10, 115 (2016).CrossRefGoogle Scholar
Abdi-Jalebi, M., Andaji-Garmaroudi, Z., Cacovich, S., Stavrakas, C., Philippe, B., Richter, J.M., Alsari, M., Booker, E.P., Hutter, E.M., Pearson, A.J., Nature 555, 497 (2018).CrossRefGoogle Scholar
Braly, I.L., deQuilettes, D.W., Pazos-Outón, L.M., Burke, S., Ziffer, M.E., Ginger, D.S., Hillhouse, H.W., Nat. Photonics 12, 355 (2018).CrossRefGoogle Scholar
Stranks, S.D., Hoye, R.L., Di, D., Friend, R.H., Deschler, F., Adv. Mater. 31, 1803336 (2019).CrossRefGoogle Scholar
Brenner, T.M., Egger, D.A., Kronik, L., Hodes, G., Cahen, D., Nat. Rev. Mater. 1, 1 (2016).CrossRefGoogle Scholar
Jestin, Y., Down-Shifting of the Incident Light for Photovoltaic Applications, in Comprehensive Renewable Energy (Elsevier , Oxford, UK, 2012).Google Scholar
Correig, X., Calderer, J., Blasco, E., Alcubilla, R., Solid State Electron. 33, 477 (1990).CrossRefGoogle Scholar
Lark-Horovitz, K., Johnson, V.A., Solid State Phys. B (Academic Press , New York, 1959).Google Scholar
Kirchartz, T., Krückemeier, L., Unger, E.L., APL Mater. 6, 100702 (2018).CrossRefGoogle Scholar
Yang, Y., Yan, Y., Yang, M., Choi, S., Zhu, K., Luther, J.M., Beard, M.C., Nat. Commun. 6, 7961 (2015).Google Scholar
Yang, Y., Yang, M., Moore, D.T., Yan, Y., Miller, E.M., Zhu, K., Beard, M.C., Nat.Energy 2, 1 (2017).Google Scholar
Wang, J., Fu, W., Jariwala, S., Sinha, I., Jen, A.K.-Y., Ginger, D.S., ACS Energy Lett. 4, 222 (2018).Google Scholar
Cohen, R., Lyahovitskaya, V., Poles, E., Liu, A., Rosenwaks, Y., Appl. Phys. Lett. 73, 1400 (1998).Google Scholar
Royea, W.J., Juang, A., Lewis, N.S., Appl. Phys. Lett. 77, 1988 (2000).Google Scholar
Zhao, X.-H., DiNezza, M.J., Liu, S., Campbell, C.M., Zhao, Y., Zhang, Y.-H., Appl. Phys. Lett. 105, 252101 (2014).Google Scholar
Hutter, E.M., Hofman, J.J., Petrus, M.L., Moes, M., Abellón, R.D., Docampo, P., Savenije, T.J., Adv. Energy Mater. 7, 1602349 (2017).CrossRefGoogle Scholar
Luo, D., Su, R., Zhang, W., Gong, Q., Zhu, R., Nat. Rev. Mater. 5, 44 (2020).CrossRefGoogle Scholar
Abdi-Jalebi, M., Andaji-Garmaroudi, Z., Pearson, A.J., Divitini, G., Cacovich, S., Philippe, B., Rensmo, H., Ducati, C., Friend, R.H., Stranks, S.D., ACS Energy Lett. 3, 2671 (2018).CrossRefGoogle Scholar
Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J.-P., Tress, W.R., Abate, A., Hagfeldt, A., Science 354, 206 (2016).CrossRefGoogle Scholar
Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., Huang, J., Adv. Mater. 26, 6503 (2014).Google Scholar
Bi, C., Wang, Q., Shao, Y., Yuan, Y., Xiao, Z., Huang, J., Nat. Commun. 6, 1 (2015).Google Scholar
Yang, S., Dai, J., Yu, Z., Shao, Y., Zhou, Y., Xiao, X., Zeng, X.C., Huang, J., J. Am. Chem. Soc. 141, 5781 (2019).Google Scholar
Zheng, X., Chen, B., Dai, J., Fang, Y., Bai, Y., Lin, Y., Wei, H., Zeng, X.C., Huang, J., Nat. Energy 2, 1 (2017).Google Scholar
Tan, H., Jain, A., Voznyy, O., Lan, X., De Arquer, F.P.G., Fan, J.Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y., Science 355, 722 (2017).Google Scholar
Li, B., Chen, Y., Liang, Z., Gao, D., Huang, W., RSC Adv. 5, 94290 (2015).Google Scholar
Albani, J.R., Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies (Elsevier , Amsterdam, The Netherlands, 2011).Google Scholar
Ullrich, B., Singh, A.K., Barik, P., Xi, H., Bhowmick, M., Opt. Lett. 40, 2580 (2015).CrossRefGoogle Scholar
Guo, Y., Yaffe, O., Hull, T.D., Owen, J.S., Reichman, D.R., Brus, L.E., Nat. Commun. 10, 1 (2019).Google Scholar
Umari, P., Mosconi, E., De Angelis, F., J. Phys. Chem. Lett. 9, 620 (2018).CrossRefGoogle Scholar
Fabini, D.H., Stoumpos, C.C., Laurita, G., Kaltzoglou, A., Kontos, A.G., Falaras, P., Kanatzidis, M.G., Seshadri, R., Angew. Chem. Int. Ed. Engl. 55, 15392 (2016).Google Scholar
Galkowski, K., Mitioglu, A., Miyata, A., Plochocka, P., Portugall, O., Eperon, G.E., Wang, J.T.-W., Stergiopoulos, T., Stranks, S.D., Snaith, H.J., Energy Environ. Sci. 9, 962 (2016).CrossRefGoogle Scholar
Wang, J.-F., Fu, X.-N., Wang, J.-T., Chin. Phys. B 26, 106301 (2017).Google Scholar
Fang, H.-H., Adjokatse, S., Shao, S., Even, J., Loi, M.A., Nat. Commun. 9, 243 (2018).Google Scholar
Wright, A.D., Verdi, C., Milot, R.L., Eperon, G.E., Pérez-Osorio, M.A., Snaith, H.J., Giustino, F., Johnston, M.B., Herz, L.M., Nat. Commun. 7, 11755 (2016).Google Scholar
Yang, J., Wen, X., Xia, H., Sheng, R., Ma, Q., Kim, J., Tapping, P., Harada, T., Kee, T.W., Huang, F., Nat. Commun. 8, 14120 (2017).Google Scholar
Sendner, M., Nayak, P.K., Egger, D.A., Beck, S., Müller, C., Epding, B., Kowalsky, W., Kronik, L., Snaith, H.J., Pucci, A., Mater. Horiz. 3, 613 (2016).CrossRefGoogle Scholar
Perez-Osorio, M.A., Champagne, A., Zacharias, M., Rignanese, G.-M., Giustino, F., J. Phys. Chem. C 121, 18459 (2017).CrossRefGoogle Scholar
Govinda, S., Kore, B.P., Bokdam, M., Mahale, P., Kumar, A., Pal, S., Bhattacharyya, B., Lahnsteiner, J., Kresse, G., Franchini, C., J. Phys. Chem. Lett. 8, 4113 (2017).CrossRefGoogle Scholar
Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J.T.-W., Stranks, S.D., Snaith, H.J., Nicholas, R.J., Nat. Phys. 11, 582 (2015).CrossRefGoogle Scholar
Guo, Z., Wan, Y., Yang, M., Snaider, J., Zhu, K., Huang, L., Science 356, 59 (2017).CrossRefGoogle Scholar
Filippetti, A., Mattoni, A., Caddeo, C., Saba, M.I., Delugas, P., Phys. Chem. Chem. Phys. 18, 15352 (2016).CrossRefGoogle Scholar
Nagai, M., Tomioka, T., Ashida, M., Hoyano, M., Akashi, R., Yamada, Y., Aharen, T., Kanemitsu, Y., Phys. Rev. Lett. 121, 145506 (2018).CrossRefGoogle Scholar
Yang, Y., Ostrowski, D.P., France, R.M., Zhu, K., van de Lagemaat, J., Luther, J.M., Beard, M.C., Nat. Photonics 10, 53 (2016).Google Scholar
Wu, K.W., Bera, A., Ma, C., Du, Y.M., Yang, Y., Li, L., Wu, T., Phys. Chem. Chem. Phys. 16, 22476 (2014).Google Scholar
Azarhoosh, P., McKechnie, S., Frost, J.M., Walsh, A., Van Schilfgaarde, M., APLMater. 4, 091501 (2016).Google Scholar
Motta, C., El-Mellouhi, F., Kais, S., Tabet, N., Alharbi, F., Sanvito, S., Nat. Commun. 6, 7026 (2015).CrossRefGoogle Scholar
Hutter, E.M., Gélvez-Rueda, M.C., Osherov, A., Bulović, V., Grozema, F.C., Stranks, S.D., Savenije, T.J., Nat. Mater. 16, 115 (2017).CrossRefGoogle Scholar
Galvani, B., Suchet, D., Delamarre, A., Bescond, M., Michelini, F.V., Lannoo, M., Guillemoles, J.-F., Cavassilas, N., ACS Omega 4, 21487 (2019).CrossRefGoogle Scholar
Brennan, M.C., Herr, J.E., Nguyen-Beck, T.S., Zinna, J., Draguta, S., Rouvimov, S., Parkhill, J., Kuno, M., J. Am. Chem. Soc. 139, 12201 (2017).CrossRefGoogle Scholar
Behrouznejad, F., Shahbazi, S., Taghavinia, N., Wu, H.-P., Diau, E.W.-G., J.Mater. Chem. A 4, 13488 (2016).CrossRefGoogle Scholar
Ball, J.M., Stranks, S.D., Hörantner, M.T., Hüttner, S., Zhang, W., Crossland, E.J., Ramirez, I., Riede, M., Johnston, M.B., Friend, R.H., Energy Environ. Sci. 8, 602 (2015).CrossRefGoogle Scholar
Treharne, R.E., Seymour-Pierce, A., Durose, K., Hutchings, K., Roncallo, S., Lane, D., J. Phys. Conf. Ser. 286, 012038 (2011).CrossRefGoogle Scholar
Ball, J.M., Stranks, S.D., Hörantner, M.T., Hüttner, S., Zhang, W., Crossland, E.J.W., Ramirez, I., Riede, M., Johnston, M.B., Friend, R.H., Snaith, H.J., Energy Environ. Sci. 8, 602 (2015).CrossRefGoogle Scholar
Dabbabi, S., Garcia-Loureiro, A., Ajili, M., Ben Nasr, T., Kamoun, N., Mater. Res. Express 6, 1050b6 (2019).CrossRefGoogle Scholar
Filipič, M., Löper, P., Niesen, B., De Wolf, S., Krč, J., Ballif, C., Topič, M., Opt. Express 23, A263 (2015).CrossRefGoogle Scholar
Manzoor, S., Häusele, J., Bush, K.A., Palmstrom, A.F., Carpenter, J., Yu, Z.J., Bent, S.F., McGehee, M.D., Holman, Z.C., Opt. Express 26, 27441 (2018).CrossRefGoogle Scholar
Moerland, R.J., Hoogenboom, J.P., Optica 3, 112 (2016).CrossRefGoogle Scholar
Rubin, M., Sol. Energy Mater. 12, 275 (1985).CrossRefGoogle Scholar
Sarkar, S., Gupta, V., Kumar, M., Schubert, J., Probst, P.T., Joseph, J.. König, T.A.F., ACS Appl. Mater. Interfaces 11, 13752 (2019).Google Scholar
Stelling, C., Singh, C.R., Karg, M., König, T.A.F., Thelakkat, M., Retsch, M., Sci. Rep. 7, 42530 (2017).□CrossRefGoogle Scholar