Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-18T03:00:24.928Z Has data issue: false hasContentIssue false

Porphyrin-based nanocomposites for tumor photodynamic therapy

Published online by Cambridge University Press:  11 March 2019

Weitao Yang
Affiliation:
Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, China; weitaoyang@tongji.edu.cn
Bingbo Zhang
Affiliation:
Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering and Nano Science,Tongji University School of Medicine, China; bingbozhang@tongji.edu.cn
Get access

Abstract

Porphyrins and their associated derivatives have been widely used as photosensitizers for photodynamic therapy (PDT) of tumors. To overcome the limitations of porphyrin photosensitizers in PDT, the marriage of porphyrins and nanotechnology offers a new perspective to improve the efficacy and safety of porphyrin-based PDT. To date, various organic and inorganic nanoparticles have been developed for porphyrin delivery for high payload photosensitizers, protection from premature release of photosensitizers, and tumor-selective targeting. In this article, we summarize the strategies for porphyrin photosensitizer delivery, including encapsulation, covalent conjugation, self-assembly for PDT, and characterization methods of singlet oxygen (1O2) generation. We focus on the summarized strategies of improving cancer PDT efficacy by nanotechnology. Finally, the challenges and outlook for porphyrin-based nanocomposites-mediated PDT are discussed.

Type
Self-Assembled Porphyrin and Macrocycle Derivatives
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, J.J., Chen, Q., Feng, L.Z., Liu, Z., Nano Today 21, 55 (2018).Google Scholar
Denkova, A.G., de Kruijff, R.M., Serra-Crespo, P., Adv. Healthc. Mater. 7, 1701211 (2018).Google Scholar
Lucky, S.S., Soo, K.C., Zhang, Y., Chem. Rev. 115, 1990 (2015).Google Scholar
Park, J., Jiang, Q., Feng, D.W., Mao, L.Q., Zhou, H.C., J. Am. Chem. Soc. 138, 3518 (2016).Google Scholar
Liang, X.L., Li, X.D., Jing, L.J., Yue, X.L., Dai, Z.F., Biomaterials 35, 6379 (2014).Google Scholar
Lu, K.D., He, C.B., Guo, N.N., Chan, C., Ni, K.Y., Weichselbaum, R.R., Lin, W.B., J. Am. Chem. Soc. 138, 12502 (2016).Google Scholar
Zhou, Y.M., Liang, X.L., Da, Z.F., Nanoscale 8, 12394 (2016).Google ScholarPubMed
Zhao, T., Wu, H., Yao, S.Q., Xu, Q.-H., Xu, G.Q., Langmuir 26, 14937 (2010).Google Scholar
Lu, K., He, C., Lin, W., J. Am. Chem. Soc. 136, 16712 (2014).Google Scholar
Yan, L., Miller, J., Yuan, M., Liu, J.F., Busch, T.M., Tsourkas, A., Cheng, Z.L., Biomacromolecules 18, 1836 (2017).Google Scholar
Feng, Q., Wang, J., Song, H., Zhuo, L.G., Wang, G.Q., Liao, W., Feng, Y., Wei, H.Y., Chen, Y., Yang, Y.C., Yang, X., J. Drug Deliv. Sci. Technol. 47, 137 (2018).Google Scholar
Jing, L.J., Liang, X.L., Li, X.D., Lin, L., Yang, Y.B., Yue, X.L., Dai, Z.F., Theranostics 4, 858 (2014).Google Scholar
Oo, M.K.K., Yang, Y.M., Hu, Y., Gomez, M., Du, H., Wang, H.J., ACS Nano 6, 1939 (2012).Google Scholar
Gu, H.W., Xu, K.M., Yang, Z.M., Chang, C.K., Xu, B., Chem. Commun. 34, 4270 (2005).Google Scholar
You, Y.J., Liang, X.L., Yin, T.H., Chen, M., Qiu, C., Gao, C., Wang, X.Y., Mao, Y.J., Qu, E.Z., Dai, Z.F., Zheng, R.Q., Theranostics 8, 1665 (2018).Google Scholar
Wang, J., Zhong, Y., Wang, X., Yang, W., Bai, F., Zhang, B., Alarid, L., Bian, K., Fan, H., Nano Lett. 17, 6916 (2017).Google Scholar
Wang, D., Niu, L., Qiao, Z.-Y., Cheng, D.-B., Wang, J., Zhong, Y., Bai, F., Wang, H., Fan, H., ACS Nano 12, 3796 (2018).Google Scholar
Roby, A., Erdogan, S., Torchilin, V.P., Eur. J. Pharm. Biopharm. 62, 235 (2006).Google Scholar
Fakayode, O.J., Kruger, C.A., Songca, S.P., Abrahamse, H., Oluwafemi, O.S., Mater. Sci. Eng. C 92, 737 (2018).Google Scholar
Niedre, M., Patterson, M.S., Wilson, B.C., Photochem. Photobiol. 75, 382 (2002).Google Scholar
Ping, J.T., Peng, H.S., Qin, J.L., You, F.T., Wang, Y.Q., Chen, G.X., Song, M., Microchim. Acta 185, 1 (2018).Google Scholar
Lion, Y., Delmelle, M., Vandevorst, A., Nature 263, 442 (1976).Google Scholar
Ge, J., Lan, M., Zhou, B., Liu, W., Guo, L., Wang, H., Jia, Q., Niu, G., Huang, X., Zhou, H., Meng, X., Wang, P., Lee, C.-S., Zhang, W., Han, X., Nat. Commun. 5, 4596 (2014).Google Scholar
Fan, W., Bu, W., Shen, B., He, Q., Cui, Z., Liu, Y., Zheng, X., Zhao, K., Shi, J., Adv. Mater. 27, 4155 (2015).Google Scholar
Nakano, M., Sugioka, K., Ushijima, Y., Goto, T., Anal. Biochem. 159, 363 (1986).Google Scholar
Zhou, A.G., Wei, Y.C., Wu, B.Y., Chen, Q., Xing, D., Mol. Pharm. 9, 1580 (2012).Google Scholar
Shan, J., Budijono, S.J., Hu, G., Yao, N., Kang, Y., Ju, Y., Prud’homme, R.K., Adv. Funct. Mater. 21, 2488 (2011).Google Scholar
Hu, J., Tang, Y.A., Elmenoufy, A.H., Xu, H.B., Cheng, Z., Yang, X.L., Small 11, 5860 (2015).Google Scholar
Kamkaew, A., Feng, C., Zhan, Y., Majewski, R.L., Cai, W., ACS Nano 10, 3918 (2016).Google Scholar
Zou, X.J., Yao, M.Z., Ma, L., Hossu, M., Han, X.M., Juzenas, P., Chen, W., Nanomedicine 9, 2339 (2014).Google Scholar
Tao, D., Feng, L., Chao, Y., Liang, C., Song, X., Wang, H., Yang, K., Liu, Z., Adv. Funct. Mater. 28, 1804901 (2018).Google Scholar
Zhang, Y., Wang, F.M., Liu, C.Q., Wang, Z.Z., Kang, L.H., Huang, Y.Y., Dong, K., Ren, J.S., Qu, X.G., ACS Nano 12, 651 (2018).Google Scholar
Weissleder, R., Science 312, 1168 (2006).Google Scholar
Pysz, M.A., Gambhir, S.S., Willmann, J.K., Clin. Radiol. 65, 500 (2010).Google Scholar
Srivatsan, A., Jenkins, S.V., Jeon, M., Wu, Z.J., Kim, C., Chen, J.Y., , R.K., Theranostics 4, 163 (2014).Google Scholar
Cheng, L., Jiang, D., Kamkaew, A., Valdovinos, H.F., Im, H.J., Feng, L., England, C.G., Goel, S., Barnhart, T.E., Liu, Z., Adv. Funct. Mater. 27, 1702928 (2017).Google Scholar