Hostname: page-component-797576ffbb-6mkhv Total loading time: 0 Render date: 2023-12-02T02:43:35.537Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

The science of silks

Published online by Cambridge University Press:  14 January 2013

F. Vollrath
Affiliation:
Department of Zoology, University of Oxford, UK; fritz.vollrath@zoo.ox.ac.uk
D. Porter
Affiliation:
Department of Zoology, University of Oxford, UK; david.porter@zoo.ox.ac.uk
C. Holland
Affiliation:
Department of Zoology, University of Oxford, UK, and Department of Materials Science and Engineering, University of Sheffield, UK; christopher.holland@sheffield.ac.uk
Get access

Abstract

Comparative silk research has begun to provide us with valuable insights into a class of biopolymers that have evolved an enormous range of material performance based on highly adapted structure-property interactions. As outlined in this article, such insights cover the analysis of biological and bioinspired spinning technologies, the discovery of a novel type of melt spinning at ambient temperatures, and an advanced predictive modeling framework that uses ab initio calculations. Importantly, the huge diversity and extensive range of material properties found in natural silks is providing a fertile field for discoveries that could change the polymer paradigm and our approach to using proteins as structural materials. For example, highly relevant to both sustainability and engineering properties is the role of water in silk processing and function, as this article will explore in some detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altman, G.H., Diaz, F., Jakuba, C.. Calabro, T., Horan, R.L., Chen, J.S., Lu, H., Richmond, J., Kaplan, D.L., Biomaterials, 24, 401 (2003).CrossRefGoogle ScholarPubMed
Omenetto, F.G., Kaplan, D.L., Science 329, 528 (2010).CrossRefGoogle Scholar
Vollrath, F., Porter, D., Holland, C., Soft Matter 7, 9595 (2011).CrossRefGoogle Scholar
Holland, C., Vollrath, F., in Biologically Inspired Textiles, Ellison, M.S., Abbott, A.G., Eds. (Woodhead Publishing, Cambridge, UK, 2008).Google Scholar
Sutherland, T.D., Young, J.H., Weisman, S., Hayashi, C.Y., Merritt, D.J., Annu. Rev. Entomol. 55, 171 (2010).CrossRefGoogle Scholar
Eisoldt, L., Smith, A., Scheibel, T., Mater. Today 14, 80 (2011).CrossRefGoogle Scholar
Vollrath, F., Curr. Biol. 15, 364 (2005).CrossRefGoogle Scholar
Chen, F., Porter, D., Vollrath, F., J. R. Soc. Interface 9 (74), 2299 (2012).CrossRefGoogle Scholar
Holland, C.A., Terry, A.E., Porter, D., Vollrath, F., Nat. Mater. 5, 870 (2006).CrossRefGoogle Scholar
Vollrath, F., Knight, D.P., Nature 410, 541 (2001).CrossRefGoogle Scholar
Dicko, C., Porter, D., Bond, J.E., Kenney, J.M., Vollrath, F., Biomacromolecules (2007).Google Scholar
Dicko, C., Kenney, J.M., Vollrath, F., in Advances in Protein Chemistry, Kajava, A., Squire, J.M., Parry, D.A.D., Eds. (Elsevier, NY, 2006), vol. 73, pp. 1753.Google Scholar
Vollrath, F., Porter, D., Soft Matter 2, 377 (2006).CrossRefGoogle Scholar
Lucas, F., Rudall, K., Compr. Biochem. 26 (B), 475 (1968).Google Scholar
Hayashi, C.Y., Lewis, R.V., Science 287, 1477 (2000).CrossRefGoogle Scholar
Yonemura, N., Sehnal, F.E., J. Mol. Evol. 63, 42 (2006).CrossRefGoogle Scholar
Asakura, T., Umemura, K., Nakazawa, Y., Hirose, H., Higham, J., Knight, D., Biomacromolecules 8, 175 (2007).CrossRefGoogle Scholar
Moriya, M., Roschzttardtz, F., Nakahara, Y., Saito, H., Masubuchi, Y., Asakura, T., Biomacromolecules 10, 929 (2009).CrossRefGoogle Scholar
Holland, C., Porter, D., Vollrath, F., Biopolymers 97, 362 (2012).CrossRefGoogle Scholar
Holland, C., Vollrath, F., Ryan, A.J., Mykhaylyk, O.O., Adv. Mater. 24, 105 (2012).CrossRefGoogle Scholar
Chen, F., Porter, D., Vollrath, F., Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 82, 041911 (2010).CrossRefGoogle Scholar
Vollrath, F., Porter, D., Polymer 50, 5623 (2009).CrossRefGoogle Scholar
Liu, Y., Sponner, A., Porter, D., Vollrath, F., Biomacromolecules 12 (11), 4030 (2007).Google Scholar
Vollrath, F., Madsen, B., Shao, Z., Proc. R. Soc. 268, 2339 (2001).CrossRefGoogle Scholar
Shao, Z.Z., Vollrath, F., Nature 418, 741 (2002).CrossRefGoogle Scholar
Riekel, C., Madsen, B., Knight, D., Vollrath, F., Biomacromolecules 1, 622 (2000).CrossRefGoogle Scholar
Riekel, C., Vollrath, F., Int. J. Biol. Macromol. 29, 203 (2001).CrossRefGoogle Scholar
Young, R.J., Sirichaisit, J., Shao, Z., Vollrath, F., in The New Polymers: Science, Technology and Applications (Institute of Physics, London, 1998).Google Scholar
Knight, D.P., Knight, M.M., Vollrath, F., Int. J. Biol. Macromol. 27, 205 (2000).CrossRefGoogle Scholar
Craig, C., Annu. Rev. Entomol. 42, 231 (1997).CrossRefGoogle Scholar
Knight, D., Vollrath, F., Tissue Cell 31, 617 (1999).CrossRefGoogle Scholar
Akai, H., J. Seric. Sci. Jpn. 55, 163 (1986).Google Scholar
Porter, D., Vollrath, F., Adv. Mater. 21, 487 (2009).CrossRefGoogle Scholar
Magoshi, J., Magoshi, Y., Nakamura, S., Appl. Polym. Symp. 41, 187 (1985).Google Scholar
Akai, H., Imai, T., Tsubouchi, K., J. Seric. Sci. Jpn. 56, 131 (1987).Google Scholar
Viney, C., Supramol. Sci. 4, 75 (1997).CrossRefGoogle Scholar
Knight, D.P., Vollrath, F., Proc. R. Soc. London, Ser. B 266, 519 (1999).CrossRefGoogle Scholar
Asakura, T., Yao, J., Yang, M., Zhu, Z., Hirose, H., Polymer 48, 2064 (2007).CrossRefGoogle Scholar
Chen, G.-Y., Cuculo, J.A., Tucker, P.A., J. Polym. Sci., Part B: Polym. Phys. 30, 557 (1992).CrossRefGoogle Scholar
Kerkam, K., Viney, C., Kaplan, D., Lombardi, S., Nature 349, 596 (1991).CrossRefGoogle Scholar
Zhong, X., Zhou, P., Shao, Z.Z., Chen, S.M., Chen, X., Hu, B.W., Deng, F., Yao, W.H., Biochemistry 43, 11932 (2004).CrossRefGoogle Scholar
Magoshi, J., Magoshi, Y., Kato, M., Becker, M.A., Nakamura, S., Abstr. Pap. Am. Chem. Soc. 214, 209 (1997).Google Scholar
Dicko, C., Kenney, J.M., Knight, D., Vollrath, F., Biochemistry 43, 14080 (2004).CrossRefGoogle Scholar
Dicko, C., Knight, D., Kenney, J.M., Vollrath, F., Biomacromolecules 5, 758 (2004).CrossRefGoogle Scholar
Dicko, C., Knight, D., Vollrath, F., Kenney, J.M., Biochemistry 43, 14080 (2004).CrossRefGoogle Scholar
Foo, C.W.P., Bini, E., Hensman, J., Knight, D.P., Lewis, R.V., Kaplan, D.L., Appl. Phys. A 82, 223 (2006).CrossRefGoogle Scholar
Vollrath, F., Knight, D.P., Hu, X.W., Proc. R. Soc. London, Ser. B 265, 817 (1998).CrossRefGoogle Scholar
Dicko, C., Vollrath, F., Kenney, J.M., Biomacromolecules 5, 704 (2004).CrossRefGoogle Scholar
Knight, D.P., Vollrath, F., Naturwissenschaften 88, 179 (2001).CrossRefGoogle Scholar
Meyer, K.H., Jeannerat, J., Helv. Chim. Acta 22, 22 (1939).CrossRefGoogle Scholar
Ochi, A., Nemoto, N., Magoshi, J., Ohyama, E., Hossain, K.S., J. Soc. Rheol. Jpn. 30, 289 (2002).CrossRefGoogle Scholar
Terry, A.E., Knight, D.P., Porter, D., Vollrath, F., Biomacromolecules 5, 768 (2004).CrossRefGoogle Scholar
Kojic, N., Bico, J., Clasen, C., McKinley, G.H., J. Exp. Biol. 209, 4355 (2006).CrossRefGoogle Scholar
Moriya, M., Ohgo, K., Masubuchi, Y., Asakura, T., Polymer 49, 952 (2008).CrossRefGoogle Scholar
Boulet-Audet, M., Vollrath, F., Holland, C., Phys. Chem. Chem. Phys. 13, 3979 (2011).CrossRefGoogle Scholar
Holland, C., Urbach, J.S., Blair, D.L., Soft Matter 8, 2590 (2012).CrossRefGoogle Scholar
Holland, C., Terry, A.E., Porter, D., Vollrath, F., Polymer 48, 3388 (2007).CrossRefGoogle Scholar
Ohgo, K., Bagusat, F., Asakura, T., Scheler, U., J. Am. Chem. Soc. 130, 4182 (2008).CrossRefGoogle Scholar
Rössle, M., Panine, P., Urban, V.S., Riekel, C., Biopolymers 74, 316 (2004).CrossRefGoogle Scholar
Arevalo, R.C., Urbach, J.S., Blair, D.L., Biophys. J. 99, L65 (2010).CrossRefGoogle Scholar
Schmoller, K.M., Fernandez, P., Arevalo, R.C., Blair, D.L., Bausch, A.R., Nat. Commun. 1, 134 (2010).CrossRefGoogle Scholar
Putthanarat, S., Stribeck, N., Fossey, S.A., Eby, R.K., Adams, W.W., Polymer 41, 7735 (2000).CrossRefGoogle Scholar
Poza, P., Perez-Rigueiro, J., Elices, M., Llorca, J., Eng. Fract. Mech. 69, 1035 (2002).CrossRefGoogle Scholar
Hakimi, O., Knight, D.P., Knight, M.M., Grahn, M.F., Vadgama, P., Biomacromolecules 7, 2901 (2006).CrossRefGoogle Scholar
Guan, J., Porter, D., Vollrath, F., Polymer 53 (13), 2717 (2012).CrossRefGoogle Scholar
Drodge, D.R., Mortimer, B., Holland, C., Siviour, C.R., J. Mech. Phys. Solids 60 (10), 1710 (2012).CrossRefGoogle Scholar
Tsukada, M., Freddi, G., Crighton, J.S., J. Polym. Sci. Pol. Phys. 32, 243 (1994).CrossRefGoogle Scholar
Mykhaylyk, O.O., Soft Matter 6, 4430 (2010).CrossRefGoogle Scholar
Porter, D., Vollrath, F., Soft Matter 4, 328 (2008).CrossRefGoogle Scholar
Porter, D., Vollrath, F., Biochim. Biophys. Acta 1824 (6), 785 (2012).CrossRefGoogle Scholar
Vollrath, F., Porter, D., Holland, C., Soft Matter 7, 9595 (2011).CrossRefGoogle Scholar
Fu, C., Shao, Z., Fritz, V., Chem. Commun. 6515 (2009).CrossRefGoogle Scholar
Chung, H., Kim, T.Y., Lee, S.Y., Curr. Opin. Biotechnol. 23, 957 (2012).CrossRefGoogle Scholar
Hudspeth, M., Nie, X., Chen, W., Lewis, R., Biomacromolecules 13 (8), 2240 (2012).CrossRefGoogle Scholar
Porter, D., Guan, J., Vollrath, F., Adv. Mat., in press (2013), doi 10.1002/adma.201204158.Google Scholar
Chen, F., Porter, D., Vollrath, F., Acta Biomater. 8 (7), 2620 (2011).CrossRefGoogle Scholar
Termonia, Y., Macromolecules 27, 7378 (1994).CrossRefGoogle Scholar
Keten, S., Xu, Z., Ihle, B., Buehler, M.J., Nat. Mater. 9 (4), 359 (2010).CrossRefGoogle Scholar
Porter, D., Vollrath, F., Biochim. Biophys. Acta 1824 (6), 785 (2012).CrossRefGoogle Scholar
Porter, D., Vollrath, F., Nanotoday 2, 6 (2007).CrossRefGoogle Scholar
Porter, D., Vollrath, F., Shao, J.Z., Eur. Phys. J. E 16, 199 (2005).CrossRefGoogle Scholar
Blackledge, T.A., Boutry, C., Wong, S.C., Baji, A., Dhinojwala, A., Sahni, V., Agnarsson, I., J. Exp. Biol. 212 (Pt. 13), 1981 (2009).CrossRefGoogle Scholar
Sutherland, T.D., Campbell, P.M., Weisman, S., Trueman, H.E., Sriskantha, A., Wanjura, W.J., Haritos, V.S., Genome Res. 16 (11), 1414 (2006).CrossRefGoogle Scholar
Xia, X.-X., Qian, Z.G., Ki, C.S., Park, Y.H., Kaplan, D.L., Lee, S.Y., Proc. Natl. Acad. Sci. U.S.A. 107 (32), 14059 (2010).CrossRefGoogle Scholar
Lazaris, A., Arcidiacono, S., Huang, Y., Zhou, J.F., Duguay, F., Chretien, N., Welsh, E.A., Soares, J.W., Karatzas, C.N., Science 295, 472 (2002).CrossRefGoogle Scholar
Yan, J., Zhou, G., Knight, D.P., Shao, Z., Chen, X., Biomacromolecules 11 (1), 1 (2009).CrossRefGoogle Scholar
Pauli, G., The Blue Economy (Paradigm Publications, Taos, NM, 2010), p. 336.Google Scholar
Kenney, J.M., Knight, D., Wise, M.J., Vollrath, F., Eur. J. Biochem. 269, 4159 (2002).CrossRefGoogle Scholar
Wynne, A., Textiles, The Motivate Series (Macmillan Education, Oxford, UK, 1997).Google Scholar
Huang, W., Begum, R., Barber, T., Ibba, V., Tee, N.C., Hussain, M., Arastoo, M., Yang, Q., Robson, L.G., Lesage, S., Gheysens, T., Skaer, N.J., Knight, D.P., Priestley, J.V., Biomaterials, 33 (1), 59 (2012).CrossRefGoogle Scholar
Chaudhury, S., Holland, C., Thompson, M., Vollrath, F., Carr, A., JBJS, 21 (9), 1168 (2011).Google Scholar