Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T08:05:04.421Z Has data issue: false hasContentIssue false

Shape-Memory Polymers—A Class of Novel Smart Materials

Published online by Cambridge University Press:  06 April 2011

Get access

Abstract

Shape-memory polymers (SMPs) offer a number of potential technical advantages that surpass other shape-memory materials such as shape-memory metallic alloys and shape-memory ceramics. The advantages include high recoverable strain (up to 400%), low density, ease of processing and the ability to tailor the recovery temperature, programmable and controllable recovery behavior, and more importantly, low cost. This article presents the state-of-the-art regarding SMPs. First, the architecture, type, and main properties of the traditional and recently developed SMPs are introduced. Second, structural and multifunctional SMP composites are summarized and discussed. These composites greatly enhance the performance of the SMPs and widen their potential applications. Finally, current applications of SMP materials in aerospace engineering, textiles, automobiles, and medicine are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lendlein, A., Langer, R., Science 296, 1673 (2002).CrossRefGoogle Scholar
2.Lendlein, A., Kelch, S., Angew. Chem. Int. Ed. 41, 2034 (2002).3.0.CO;2-M>CrossRefGoogle Scholar
3.Behl, M., Lendlein, A., Mater. Today 10, 20 (2007).Google Scholar
4.Gall, K., Mikulas, M., Munshi, N.A., Beavers, F., Tupper, M., J. Intell. Mater. Syst. Struct. 11, 877 (2000).Google Scholar
5.Lendlein, A., Jiang, H.Y., Jünger, O., Langer, R., Nature (London) 434, 879 (2005).Google Scholar
6.Bellin, I., Kelch, S., Langer, R., Lendlein, A., Proc. Nat. Acad. Sci. U.S.A. 103, 18043 (2006).Google Scholar
7.Behl, M., Lendlein, A., Soft Matter 3, 58 (2007).CrossRefGoogle Scholar
8.Lan, X., Liu, Y.J., Lu, H.B., Wang, X.H., Leng, J.S., Smart Mater. Struct. 18, 024002 (2009).Google Scholar
9.Liu, C., Qin, H., Mather, P.T., J. Mater. Chem. 17, 1543 (2007).Google Scholar
10.Kim, B.K., Lee, S.Y., Xu, M., Polymer 7, 5781 (2007).Google Scholar
11.Li, F.K., Hou, J.N., Zhu, W., Zhang, X., Xu, M., Luo, X.L., Ma, D.Z., Kim, B.K., J. Appl. Polym. Sci. 62, 631 (1996).3.0.CO;2-U>CrossRefGoogle Scholar
12.Ma, Z.L., Zhao, W.G., Liu, Y.F., Shi, J.R., J. Appl. Polym. Sci. 63, 1511 (1997).Google Scholar
13.Liem, H., Yeung, L.Y., J. Appl. Polym. Sci. 105, 765 (2007).CrossRefGoogle Scholar
14.Han, S.I., Gu, B.H., Nam, K.H., Im, S.J., Kim, S.C., Im, S.S., Polymer 48, 1830 (2007).Google Scholar
15.Xu, S., Zhang, M., J. Appl. Polym. Sci. 104, 3818 (2007).Google Scholar
16.Kunzelman, J., Chung, T., Mather, P.T., Weder, C., J. Mater. Chem. 18, 1082 (2008).Google Scholar
17.Leng, J.S., Wu, X.L., Liu, Y.J., Smart Mater. Struct. 18, 095031 (2009).CrossRefGoogle Scholar
18.Zhang, D.W., Lan, X., Liu, Y., Leng, J., Proc. SPIE Int. Soc. Opt. Eng. 6526, 65262W/1 (2007).Google Scholar
19.Kelch, S., Choi, N.Y., Wang, Z.G., Lendlein, A., Adv. Eng. Mater. 10, 494 (2008).Google Scholar
20.Buckley, C.P., Prisacariu, C., Caraculacu, A., Polymer 48, 1388 (2007).Google Scholar
21.Yang, B., Huang, W.M., Li, C., Lee, C.M., Li, L., Smart Mater. Struct. 13, 191 (2004).Google Scholar
22.Huang, W.M., Yang, B., An, L., Li, C., Chan, Y.S., Appl. Phys. Lett. 86, 114105 (2005).Google Scholar
23.Yang, B., Huang, W.M., Li, C., Li, L., Polymer 47, 1348 (2006).Google Scholar
24.Yang, B., Huang, W.M., Li, C., Li, L., Chor, J.H., Scripta Mater. 53, 105 (2005).CrossRefGoogle Scholar
25.Leng, J.S., Lv, H.B., Liu, Y.J., Du, S.Y., Appl. Phys. Lett. 92, 206105 (2008).Google Scholar
26.Lv, H.B., Leng, J.S., Liu, Y.J., Du, S.Y., Adv. Eng. Mater. 10, 592 (2008).CrossRefGoogle Scholar
27.Lu, H.B., Liu, Y.J., Leng, J.S., Du, S.Y., Smart Mater. Struct. 18, 085003 (2009).CrossRefGoogle Scholar
28.Jung, Y.C., So, H.H., Cho, J.W., J. Macromol. Sci. Part B Phys. 45, 453 (2006).Google Scholar
29.Liang, B.H., Mott, L., Shaler, S.M., Caneba, G.T., Wood Fiber Sci. 26, 382 (1994).Google Scholar
30.Gall, K., Dunn, M.L., Liu, Y., Finch, D., Lake, M., Munshi, N.A., Acta Mater. 50, 5115 (2002).Google Scholar
31.Sahoo, N.G., Jung, Y.C., Goo, N.S., Cho, J.W., Macromol. Mater. Eng. 290, 1049 (2005).Google Scholar
32.Ni, Q.Q., Zhang, C.S., Fu, Y., Dai, G., Kimura, T., Compos. Struct. 81, 176 (2007).Google Scholar
33.Koerner, H., Price, G., Pearce, N.A., Alexander, M., Vaia, R., Nat. Mater. 3, 115 (2004).Google Scholar
34.Ohki, T., Ni, Q.Q., Iwamoto, M., Sci. Eng. Compos. Mater. 11, 137 (2004).CrossRefGoogle Scholar
35.Liu, Y.J., Lv, H.B., Lan, X., Leng, J.S., Du, S.Y., Compos. Sci. Technol. 69, 2064 (2009).CrossRefGoogle Scholar
36.Cho, J.W., Kim, J.W., Jung, Y.C., Goo, N.S., Macromol. Rapid Commun. 26, 412 (2005).Google Scholar
37.Leng, J.S., Lv, H.B., Liu, Y.J., Du, S.Y., J. Appl. Phys. 104, 104917 (2008).Google Scholar
38.Leng, J.S., Lv, H.B., Liu, Y.J., Du, S.Y., Appl. Phys. Lett. 91, 144105 (2007).Google Scholar
39.Leng, J.S., Lan, X., Liu, Y.J., Du, S.Y., Smart Mater. Struct. 18, 074003 (2009).Google Scholar
40.Leng, J.S., Lan, X., Liu, Y.J., Du, S.Y., Huang, W.M., Liu, N., Phee, S.J., Yuan, Q., Appl. Phys. Lett. 92, 014104 (2008).CrossRefGoogle Scholar
41.Leng, J.S., Huang, W.M., Lan, X., Liu, Y.J., Du, S.Y., Appl. Phys. Lett. 92, 204101 (2008).CrossRefGoogle Scholar
42.Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M., Lendlein, A., Proc. Nat. Acad. Sci. U.S.A. 103, 3540 (2006).Google Scholar
43.Schmidt, A.M., Macromol. Rapid Commun. 27, 1168 (2006).Google Scholar
44.Buckley, P.R., McKinley, G.H., Wilson, T.S., Small, W., Benett, W.J., Bearinger, J.P., McElfresh, M.W., Maitland, D.J., IEEE Trans. Biomed. Eng. 53, 2075 (2004).Google Scholar
45.Varga, Z., Filipcsei, G., Zrínyi, M., Polymer 47, 227 (2006).Google Scholar
46.Razzaq, M.Y., Anhalt, M., Frormann, L., Weidenfeller, B., Mater. Sci. Eng., A 444, 227 (2007).Google Scholar
47.Razzaq, M.Y., Anhalt, M., Frormann, L., Weidenfeller, B., Mater. Sci. Eng., A 471, 57 (2007).Google Scholar
48.Leng, J.S., Wu, X.L., Liu, Y.J., J. Appl. Polym. Sci. 114, 2455 (2009).Google Scholar
49.Small, W., Metzger, M.F., Wilson, T.S., Maitland, D.J., IEEE J. Sel. Top. Quantum Electron. 11, 4 (2005).Google Scholar
50.Maitland, D.J., Melodie, F.M., Daniel, S., Abraham, L., Laser Surg. Med. 30, 1 (2002).CrossRefGoogle Scholar
51.Small, W., Wilson, T.S., Benett, W.J., Loge, J.M., Maitland, D.J., Opt. Express 13, 8204 (2005).Google Scholar
52.Zhang, D., Liu, Y., Leng, J., 15th SPIE International Conference on Smart Structures/NDE, San Diego, SPIE 6932, March 2008.Google Scholar
53.Barrett, R., Francis, W., Abrahamson, E., Lake, M.S., 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, AIAA-2006-2039, 2006.Google Scholar
54.Campbell, D., Lake, M.S., 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2005) vol. 10, p. 6735.Google Scholar
55.Steven, C.A., Munshi, N.A., Lake, M.S., Elastic Memory Composites for Deployable Space Structures; www.CTD-materials.comGoogle Scholar
56.Yin, W., Fu, T., Liu, J., Leng, J.. 16th SPIE International Conference on Smart Structures/NDE, San Diego, SPIE 7292, March 2009.Google Scholar
57.Yu, K., Yin, W., Liu, Y., Leng, J.. 16th SPIE International Conference on Smart Structures/NDE, San Diego, SPIE 7290, March 2009.Google Scholar
58.Jeong, H.M., Lee, S.Y., Kim, B.K., J. Mater. Sci. 35, 1579 (2000).Google Scholar
59.Hayashi, S., Ishikawa, N., Giordano, C.J., J. Coated Fabrics 23, 74 (1993).CrossRefGoogle Scholar
60.Tobushi, H., Hashimoto, T., Ito, N., Hayashi, S., Yamada, E., J. Intell. Mater. Syst. Struct. 9, 127 (1998).Google Scholar
61.Hayashi, S., Fujimura, H., patent, U.S., 5049591 (1991).Google Scholar
62.Hayashi, S., patent, U.S., 5145935 (1992).Google Scholar
63.Kobayashi, K., Hayashi, S., patent, U.S., 5,128,197 (7/1992).Google Scholar
64.Kobayashi, K., Hayashi, S., patent, U.S., 5098776 (1992).Google Scholar
65.Zhu, Y., Hu, J., Yeung, L.Y., Liu, Y., Ji, F., Yeung, K.W., Smart Mater. Struct. 15, 1385 (2006).Google Scholar
66.Clark, J., patent, U.S., 0218710 (2005).Google Scholar
67.Smith, F.H., patent, U.S., 0011753 (2008).Google Scholar
68.Carter, B., patent, U.S., 7267367 (2007).Google Scholar
69.Hawkes, G.F., patent, U.S., 0125291 (2006).Google Scholar
70.Shipe, J.L., patent, U.S., 0197674 (2008).Google Scholar
71.Lambert, R.C., patent, U.S., 0117955 (2004).Google Scholar
72.Beebe, E.W., patent, U.S., 0202508 (2006).Google Scholar
73.Marble, W.A., patent, U.S., 0201116 (2005).Google Scholar
74.Doty, W.B., patent, U.S., 0202248 (2005).Google Scholar
75.Forbes, J.C., patent, U.S., 0121240 (2005).Google Scholar
76.Stuart, L.B., patent, U.S., 0214469 (2006).Google Scholar
77.Andrews, G., patent, U.S., 0272615 (2008).Google Scholar
78.Hoer, J., Klinge, U., Schachtrupp, A., Tons, C., Schumpelick, V., Langenbeck's Arch. Surg. 386, 218 (2001).Google Scholar
79.Hodgson, N.C.F., Malthaner, R.A., Ostbye, T., Ann. Surg. 231, 436 (2000).Google Scholar