Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-22T22:09:04.908Z Has data issue: false hasContentIssue false

Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures

Published online by Cambridge University Press:  31 January 2011

Get access


One-dimensional metallic nanostructures such as nanorods and nanowires are of tremendous interest for electronic, sensing, and catalytic applications. Shape anisotropy introduces new optical properties in gold and silver nanoparticles, such as longitudinal plasmon resonance bands in the visible and near-IR portion of the spectrum. Different approaches employed for the shape-controlled synthesis of silver and gold nanocrystals include chemical, electrochemical, and physical methods. The chemical route for the synthesis of nanorods and nanowires, in which metal salts are reduced in an aqueous solution, is one of the most widely used methods. This route commonly employs a surfactant as the directing agent to introduce asymmetry in the nanocrystal shape. Variation in the concentration of precursor salt and the surfactant, the nature of the surfactant, the nature and concentration of reducing agents, the presence of external salts, and the pH of the reaction solution all affect nanocrystal shape, dimension, and yield. The size and shape of the nanocrystals affect the position of the plasmon bands, which in turn has been widely used in surface-enhanced spectroscopies that include both Raman and fluorescence. The aqueous, surfactant-directed route also promises the synthesis of more complex nanostructures with additional desirable properties.

Research Article
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Liz-Marzan, L.M., Mater. Today (February 2004) p. 26.CrossRefGoogle Scholar
2.Faraday, M., Philos. Trans. Royal Soc. London 147 (1857) p. 145.Google Scholar
3. The classic talk by Feynman can be accessed in full at (accessed April 2005).Google Scholar
4. See Sci. Am. 284 (September 2001), special issue on nanotechnology.Google Scholar
5.Drexler, K.E., Nanosystems: Molecular Machinery, Manufacturing, and Computation (Wiley, New York, 1992).Google Scholar
6. See Adv. Mater. 15 (2003), special issue on nanowires.Google Scholar
7. See Acc. Chem. Res. 32 (1999), special issue on nanoscale materials.Google Scholar
8.Milliron, D.J., Hughes, S.M., Cui, Y., Manna, L., Li, J., L-Wang, W., and Alivisatos, A.P., Nature 430 (2004) p. 190.CrossRefGoogle Scholar
9.Martin, C.R., Chem. Mater. 8 (1996) p. 1739.CrossRefGoogle Scholar
10.Li, M., Schnablegger, H., and Mann, S., Nature 402 (1999) p. 393.CrossRefGoogle Scholar
11.Duan, X. F. and Lieber, C.M., Adv. Mater. 12 (2000) p. 298.3.0.CO;2-Y>CrossRefGoogle Scholar
12.Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J., Nature 382 (1996) p. 607.CrossRefGoogle Scholar
13.Israelachvili, J.N., Intermolecular and Surface Forces (Academic Press, London, 1991).Google Scholar
14.Jana, N.R., Gearheart, L., and Murphy, C.J., J. Phys. Chem. B 105 (2001) p. 4065.CrossRefGoogle Scholar
15.Jana, N.R., Gearheart, L., and Murphy, C.J., Chem. Commun. 7 (2001) p. 617.CrossRefGoogle Scholar
16.Jana, N.R., Gearheart, L., and Murphy, C.J., Adv. Mater. 13 (2001) p. 1389.3.0.CO;2-F>CrossRefGoogle Scholar
17.Nikoobakht, B. and El-Sayed, M.A., Chem. Mater. 15 (2003) p. 1957.CrossRefGoogle Scholar
18.Perez-Juste, J., Liz-Marzan, L.M., Carnie, S., Chan, D.Y.C., and Mulvaney, P., Adv. Funct. Mater. 14 (2004) p. 571.CrossRefGoogle Scholar
19.Ying, Y., Chang, S.S., Lee, C.L., and Wang, C.R.C., J. Phys. Chem. B 101 (1997) p. 6661.Google Scholar
20.Wang, Z.L., Mohamed, M.B., Link, S., and El-Sayed, M.A., Surf. Sci. 440 (1999) p. L809.CrossRefGoogle Scholar
21.Esumi, K., Matsuhisa, K., and Torigoe, K., Langmuir 11 (1995) p. 3285.CrossRefGoogle Scholar
22.Kim, F., Song, J.H., and Yang, P., J. Am. Chem. Soc. 124 (2002) p. 14316.CrossRefGoogle Scholar
23.Johnson, C.J., Dujardin, E., Davis, S.A., Murphy, C.J., and Mann, S., J. Mater. Chem. 12 (2002) p. 1765.CrossRefGoogle Scholar
24. J.Wiesner and Wokaun, A., Chem. Phys. Lett. 157 (1989) p. 569.Google Scholar
25.Brown, K.R., Walter, D.G., and Natan, M.J., Chem. Mater. 12 (2000) p. 306.CrossRefGoogle Scholar
26.Busbee, B.D., Obare, S.O., and Murphy, C.J., Adv. Mater. 15 (2003) p. 414.CrossRefGoogle Scholar
27.Sau, T.K. and Murphy, C.J., Langmuir 20 (2004) p. 6414.CrossRefGoogle Scholar
28.Lisiecki, I. and Pileni, M.P., J. Am. Chem. Soc. 115 (1993) p. 3887.CrossRefGoogle Scholar
29.Lisiecki, I., Sack-Kongehl, A.H., Weiss, K., Urban, J., and Pileni, M.P., Langmuir 16 (2000) p. 8807.CrossRefGoogle Scholar
30.Rees, G.D., Evans-Gowing, R., Hammond, S.J., and Robinson, B.H., Langmuir 15 (1999) p. 1993.CrossRefGoogle Scholar
31.Qi, L., Cheng, H., and Zhao, Z., J. Phys. Chem. B 101 (1997) p. 3460.CrossRefGoogle Scholar
32.Gai, P.L. and Harmer, M.A., Nano Lett. 2 (2002) p. 771.CrossRefGoogle Scholar
33.Gao, J., Bender, C.M., and Murphy, C.J., Langmuir 19 (2003) p. 9065.CrossRefGoogle Scholar
34.Nikoobakht, B. and El-Sayed, M.A., Langmuir 17 (2001) p. 6368.CrossRefGoogle Scholar
35.Gole, A. and Murphy, C.J., Chem. Mater. 16 (2004) p. 3633.CrossRefGoogle Scholar
36.Sun, Y., Gates, B., Mayers, B., and Xia, B.Y., Nano Lett. 2 (2002) p. 165.CrossRefGoogle Scholar
37.Liu, M. and Guyot-Sionnest, P., J. Phys. Chem. B 108 (2004) p. 5882.CrossRefGoogle Scholar
38.Taub, N., Krichevski, O., and Markovich, G., J. Phys. Chem. B 107 (2003) p. 11579.CrossRefGoogle Scholar
39.Wei, Z., Mieszawska, A.J., and Zamborini, F.P., Langmuir 20 (2004) p. 4322.CrossRefGoogle Scholar
40.Creighton, J. A. and Eadon, D.G., J. Chem. Soc., Faraday Trans. 87 (1991) p. 3881.CrossRefGoogle Scholar
41.Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C., J. Phys. Chem. B 107 (2003) p. 668.CrossRefGoogle Scholar
42.Haynes, C.L. and Van Duyne, R.P., J. Phys. Chem. B 105 (2001) p. 5599.CrossRefGoogle Scholar
43.El-Sayed, M.A., Acc. Chem. Res. 34 (2001) p. 257.CrossRefGoogle Scholar
44.Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R., and Feld, M.S., Chem. Rev. 99 (1999) p. 2957.CrossRefGoogle Scholar
45.Creighton, J.A. in Spectroscopy of Surfaces, edited by Clark, R.J.H. and Hester, R.E. (Wiley, Chichester, UK, 1988).Google Scholar
46.Jiang, J., Bosnick, K., Maillard, M., and Brus, L., J. Phys. Chem. B 107 (2003) p. 9964.CrossRefGoogle Scholar
47.Xu, H.X., Aizpurua, J., Kall, M., and Apell, P., Phys. Rev. E 62 (2000) p. 4318.CrossRefGoogle Scholar
48.Jeong, D.H., Zhang, Y.X., Moskovits, M., J. Phys. Chem. B 108 (2004) p. 12724.CrossRefGoogle Scholar
49.Tao, A., Kim, F., Hess, C., Goldberger, J., He, R., Sun, Y., Xia, Y., and Yang, P., Nano Lett. 3 (2003) p.1229.CrossRefGoogle Scholar
50.Gersten, J.I., J. Chem. Phys. 72 (1980) p. 5779.CrossRefGoogle Scholar
51.Nikoobakht, B. and El-Sayed, M.A., J. Phys. Chem. A 107 (2003) p. 3372.CrossRefGoogle Scholar
52.Nikoobakht, B., Wang, J., and El-Sayed, M.A., Chem. Phys. Lett. 366 (2002) p. 17.CrossRefGoogle Scholar
53.Parfenov, A., Gryczynksi, I., Malicka, J., Geddes, C.D., and Lakowicz, J.R., J. Phys. Chem. B 107 (2003) p. 8829.CrossRefGoogle Scholar
54.Lackowicz, J.R., Geddes, C.D., Gryczynski, I., Malicka, J., Gryczynski, Z., Aslan, K., Lukomska, J., Matveeva, E., Zhang, J., Badugu, R., and Huang, J., J. Fluoresc. 14 (2004) p. 425.CrossRefGoogle Scholar
55.Mohamed, M.B., Volkov, V., Link, S., and El-Sayed, M.A., Chem. Phys. Lett. 317 (2000) p. 517.CrossRefGoogle Scholar
56.Michaels, A.M., Nirmal, M., and Brus, L.E., J. Am. Chem. Soc. 121 (1999) p. 9932.CrossRefGoogle Scholar
57.Schultz, S., Smith, D.R., Mock, J.J., and Schultz, D.A., Proc. Natl. Acad. Sci. U.S.A. 97 (2000) p. 996.CrossRefGoogle Scholar
58.Riboh, J.C., Haes, A.J., McFarland, A.D., Yonzon, C.R., and Van Duyne, R.P., J. Phys. Chem. B 107 (2003) p. 1772.CrossRefGoogle Scholar