Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-08T03:07:19.595Z Has data issue: false hasContentIssue false

Debris/Micrometeoroid Impacts and Synergistic Effects on Spacecraft Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In the last 40 years, the increased space activity created a new form of space environment of hypervelocity objects—space debris—that have no functional use. The space debris, together with naturally occurring ultrahigh velocity meteoroids, presents a significant hazard to spacecraft. Collision with space debris or meteoroids might result in disfunction of external units such as solar cells, affecting materials properties, contaminating optical devices, or destroying satellites. The collision normally results in the formation of additional debris, increasing the hazard for future missions. The hypervelocity debris effect is studied by retrieving materials from space or by using ground simulation facilities. Simulation facilities, which include the light gas gun and Laser Driven Flyer methods, are used for studying the materials degradation due to debris impact. The impact effect could be accelerated when occurring simultaneously with other space environment components, such as atomic oxygen, ultraviolet, or x-ray radiation. Understanding the degradation mechanism might help in developing materials that will withstand the increasing hazard from the space debris, allowing for longer space missions. The large increase in space debris population and the associated risk to space activity requires significant measures to mitigate this hazard. Most current efforts are being devoted to prevention of collisions by keeping track of the larger debris and avoiding formation of new debris.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Silverman, E.M., “Space Environmental Effects on Spacecraft—LEO Material Selection Guide” (NASA Contractor Report No. 4661, Langley Research Center, 1995).Google Scholar
2. Tribble, A.C., The Space Environment: Implementation for Spacecraft Design (Princeton University Press, New Jersey, 1995).Google Scholar
3. Miao, J., Stark, J.P.W., Planet. Space Sci. 49, 927 (2001).CrossRefGoogle Scholar
4. Mandeville, J.C., Berthoud, L., Adv. Space Res. 16, 67 (1995).CrossRefGoogle Scholar
5. Paul, K.G., Igenbergs, E.B., Berthoud, L., Int. J. Impact Eng. 20, 627 (1997).CrossRefGoogle Scholar
6. Love, S.G., Brownlee, D.E., King, N.L., Horz, F., Int. J. Impact Eng. 16, 405 (1995).CrossRefGoogle Scholar
7. Mandeville, J.C., Adv. Space Res. 13, 123 (1993).CrossRefGoogle Scholar
8. NASA Langley Research Center, Impact Damage of LDEF Surfaces (http://setas-www.larc.nasa.gov/LDEF/MET_DEB/md_impact.html), 2001.Google Scholar
9. Orbital Debris Quarterly News 13, 1 (April 2009).Google Scholar
10. Christiansen, E.L., Hyde, J.L., Bernhard, R.P., Advances in Space Research 34, 1097 (2004).CrossRefGoogle Scholar
11. Kessler, D.J., Reynolds, R.C., Anz-Meador, P.D., NASA TM-100471 (1988).Google Scholar
12. Belk, C.A., Robinson, J.H., Alexander, M.B., Cooke, W.J., Pavelitz, S.D., NASA RP-1408 (1997).Google Scholar
13. Klinkrad, H., Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 221, 955 (2007).CrossRefGoogle Scholar
14. Bradley, A.M., Wein, L.M., Adv. Space Res. 43, 1372 (2009).CrossRefGoogle Scholar
15. Hyde, J., Christiansen, E., Lear, D., Kerr, J., Lyons, F., Yasensky, J., Orbital Debris Quarterly News 11 (2007).Google Scholar
16. Jantou, V., McPhail, D.S., Chater, R.J., Kearsley, A., Appl. Surf. Sci. 252, 7120 (2006).CrossRefGoogle Scholar
17. Wells, B.K., Int. J. Impact Eng. 33, 855 (2006).CrossRefGoogle Scholar
18. Manning, H.L.K., Gregoire, J.M., Int. J. Impact Eng. 33, 402 (2006).CrossRefGoogle Scholar
19. Verker, R., Eliaz, N., Gouzman, I., Eliezer, S., Fraenkel, M., Maman, S., Beckmann, F., Pranzas, K., Grossman, E., Acta Mater. 52, 5539 (2004).CrossRefGoogle Scholar
20. Stein, C., Roybal, R., Tlomak, P., Wilson, W., Space Debris 2, 331 (2000).CrossRefGoogle Scholar
21. Grujicic, M., Pandurangan, B., Zhao, C.L., Biggers, S.B., Morgan, D.R., Appl. Surf. Sci. 252, 5035 (2006).CrossRefGoogle Scholar
22. Kadono, T., Planet. Space Sci. 47, 305 (1999).CrossRefGoogle Scholar
23. Robinson, J.H., Nolen, A.M., Int. J. Impact Eng. 17, 685 (1995).CrossRefGoogle Scholar
24. Roybal, R., Tlomak, P., Stein, C., Stokes, H., Int. J. Impact Eng. 23, 811 (1999).CrossRefGoogle Scholar
25. Kawai, N., Harada, Y., Yokoo, M., Atou, T., Nakamura, K.G., Kondo, K., Int. J. Impact Eng. 35, 1612 (2008).CrossRefGoogle Scholar
26. Caprino, G., Lopresto, V., Santoro, D., Composites Science and Technology 67, 325 (2007).CrossRefGoogle Scholar
27. Lambert, M., Schäfer, F.K., Geyer, T., Int. J. Impact Eng. 26, 369 (2001).CrossRefGoogle Scholar
28. Cheng, W.L., Langlie, S., Itoh, S., Int. J. Impact Eng. 29, 167 (2003).CrossRefGoogle Scholar
29. Tennyson, R.C., Shortliffe, G., 7th Int. Symp. Mater. Space Environ. 399, 485 (1997).Google Scholar
30. Stein, C., Roybal, R., Tlomak, P., in 8th Int. Symp. Mater. Space Environ., Werling, E., Ed. (CNES Publication, Arcachon, France, 2000).Google Scholar
31. Akins, J.A., PhD degree thesis, California Institute of Technology (2003).Google Scholar
32. Verker, R., Grossman, E., Gouzman, I., Eliaz, N., High Perform. Polym. 20, 475 (2008).CrossRefGoogle Scholar
33. Verker, R., Grossman, E., Gouzman, I., Eliaz, N., Polymer 48, 19 (2007).CrossRefGoogle Scholar
34. Klopffer, M.H., Flaconneche, B., Oil & Gas Science And Technology-Revue De L Institut Francais Du Petrole 56, 223 (2001).CrossRefGoogle Scholar
35. Whitaker, A.F., Jang, B.Z., J. Appl. Polym. Sci. 48, 1341 (1993).CrossRefGoogle Scholar
36. Klein, R., Scheer, M.D., J. Phys. Chem. 72, 616 (1968).CrossRefGoogle Scholar
37. Grossman, E., Gouzman, I., Lempert, G., Noter, Y., Lifshitz, Y., J. Spacecr. Rockets 41, 356 (2004).CrossRefGoogle Scholar
38. Liou, J.C., Johnson, N.L., Science 311, 340 (2006).CrossRefGoogle ScholarPubMed
39. Rossi, A., Valsecchi, G.B., Celestial Mech. Dyn. Astron. 95, 345 (2006).CrossRefGoogle Scholar
40. Alby, F., Deguine, B., Bonnal, C., Ratte, P.M., in 55th International-Astronautical-Federation Congress (IAF) (Vancouver, Canada, 2006), pp. 310.Google Scholar
41. Technical Report on Space Debris (United Nations Publication, New York, 1999).Google Scholar
42. NASA Safety Standard, NSS 1740.14 (1995).Google Scholar
43. Adimurthy, V., Ganeshan, A.S., Acta Astronaut. 58, 168 (2005).CrossRefGoogle Scholar
44. Chobotov, V., Melamed, N., Ailor, W.H., Campbell, W.S., Acta Astronaut. 64, 946 (2009).CrossRefGoogle Scholar
45. Liou, J.C., Johnson, N.L., Acta Astronaut. 64, 236 (2009).CrossRefGoogle Scholar
46. Rex, D., Acta Astronaut. 41, 311 (1997).CrossRefGoogle Scholar
47. Rex, D., Space Policy 14, 95 (1998).CrossRefGoogle Scholar