Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T19:40:03.161Z Has data issue: false hasContentIssue false

Structures for biomimetic, fluidic, and biological applications

Published online by Cambridge University Press:  06 December 2016

Emmanuel Stratakis
Affiliation:
Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, Greece; stratak@iesl.forth.gr
Hojeong Jeon
Affiliation:
Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, South Korea; jeonhj@kist.re.kr
Sangmo Koo
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, USA; sangmo.koo@berkeley.edu
Get access

Abstract

Controlling the interactions of light with matter is crucial for the success and scalability of materials-processing applications. When ultrashort pulsed lasers are used, the optimal interplay between the laser and the material parameters enable highly precise and controllable fabrication, allowing structuring down to the nanometer scale. Besides this, a unique aspect for many applications is the possibility of material modifications at multiple length scales, leading to complex micro- and nanoscale architectures, while adding a new dimension to optimization of the structures. As a result, femtosecond laser micro-/nanoprocessing offers unique capabilities for three-dimensional, material-independent modification, opening new opportunities for innovation and exploitation in the materials industry. This article focuses on the implementation of ultrashort pulsed laser-based micro- and nanofabrication methodologies for the realization of structures relevant to biomimetic, fluidic, and biological applications. The wealth of possibilities and the number of new approaches for obtaining complex high-resolution features at the micro- and nanoscales are demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stratakis, E.I., Zorba, V., in Nanotechnologies for the Life Sciences (Wiley-VCH, Weinheim, Germany, 2010), p. 379.Google Scholar
Stratakis, E., Sci. Adv. Mater. 4, 407 (2012).Google Scholar
Sugioka, K., Cheng, Y., Light Sci. Appl. 3, e149 (2014).Google Scholar
Jeon, H., Schmidt, R., Barton, J.E., Hwang, D.J., Gamble, L.J., Castner, D.G., Grigoropoulos, C.P., Healy, K.E., J. Amer. Chem. Soc. 133, 6138 (2011).CrossRefGoogle Scholar
Di Cio, S., Gautrot, J.E., Acta Biomater. 30, 26 (2016).CrossRefGoogle Scholar
Jiang, L., ACS Nano 10, 207 (2016).Google Scholar
Mashinchian, O., Turner, L.-A., Dalby, M.J., Laurent, S., Shokrgozar, M.A., Bonakdar, S., Imani, M., Mahmoudi, M., Nanomedicine (Lond.) 10, 829 (2015).Google Scholar
Jahed, Z., Molladavoodi, S., Seo, B.B., Gorbet, M., Tsui, T.Y., Mofrad, M.R.K., Biomaterials 35, 9363 (2014).Google Scholar
Spagnolo, B., Brunetti, V., Leménager, G., De Luca, E., Sileo, L., Pellegrino, T., Pompa, P.P., De Vittorio, M., Pisanello, F., Sci. Rep. 5, 10531 (2015).CrossRefGoogle Scholar
Terzaki, K., Kissamitaki, M., Skarmoutsou, A., Fotakis, C., Charitidis, C.A., Farsari, M., Vamvakaki, M., Chatzinikolaidou, M., J. Biomed. Mater. Res. A 101, 2283 (2013).Google Scholar
Zhang, W., Chen, S., MRS Bull. 36, 1028 (2011).CrossRefGoogle Scholar
Otuka, A.J., Correa, D.S., Fontana, C.R., Mendonca, C.R., Mater. Sci. Eng. C 35, 185 (2014).Google Scholar
Sugioka, K., Cheng, Y., Appl. Phys. Rev. 1, 041303 (2014).CrossRefGoogle Scholar
Paz, V.F., Emons, M., Obata, K., Ovsianikov, A., Peterhänsel, S., Frenner, K., Reinhardt, C., Chichkov, B., Morgner, U., Osten, W., J. Laser Appl. 24, 042004 (2012).CrossRefGoogle Scholar
Juodkazis, S., Mizeikis, V., Seet, K.K., Miwa, M., Misawa, H., Nanotechnology 16, 846 (2005).Google Scholar
Rekstyte, S., Zukauskas, A., Purlys, V., Gordienko, Y., Malinauskas, M., Appl. Surf. Sci. 270, 382 (2013).CrossRefGoogle Scholar
Kufelt, O., El-Tamer, A., Sehring, C., Meißner, M., Schlie-Wolter, S., Chichkov, B.N., Acta Biomater. 18, 186 (2015).Google Scholar
Ovsianikov, A., Deiwick, A., Van Vlierberghe, S., Dubruel, P., Möller, L., Dräger, G., Chichkov, B., Biomacromolecules 12, 851 (2011).CrossRefGoogle Scholar
Psycharakis, S., Tosca, A., Melissinaki, V., Giakoumaki, A., Ranella, A., Biomed. Mater. 6, 045008 (2011).Google Scholar
Ovsianikov, A., Gruene, M., Pflaum, M., Koch, L., Maiorana, F., Wilhelmi, M., Haverich, A., Chichkov, B., Biofabrication 2, 014104 (2010).CrossRefGoogle Scholar
Stankevicius, E., Gertus, T., Rutkauskas, M., Gedvilas, M., Raciukaitis, G., Gadonas, R., Smilgevicius, V., Malinauskas, M., J. Micromech. Microeng. 22, 065022 (2012).Google Scholar
Ma, Z., Koo, S., Finnegan, M.A., Loskill, P., Huebsch, N., Marks, N.C., Conklin, B.R., Grigoropoulos, C.P., Healy, K.E., Biomaterials 35, 1367 (2014).Google Scholar
Farsari, M., Vamvakaki, M., Chichkov, B.N., J. Opt. 12, 124001 (2010).Google Scholar
Klar, T.A., Wollhofen, R., Jacak, J., Phys. Scr. T162, 014049 (2014).CrossRefGoogle Scholar
Schneider, J., Zahn, J., Maglione, M., Sigrist, S.J., Marquard, J., Chojnacki, J., Kräusslich, H.-G., Sahl, S.J., Engelhardt, J., Hell, S.W., Nat. Methods 12, 827 (2015).CrossRefGoogle Scholar
Sun, Z.B., Dong, X.-Z., Chen, W.-Q., Nakanishi, S., Duan, X.-M., Kawata, S., Adv. Mater. 20, 914 (2008).Google Scholar
Stratakis, E., Ranella, A., Fotakis, C., Biomicrofluidics 5, 13411 (2011).Google Scholar
Zorba, V., Stratakis, E., Barberoglou, M., Spanakis, E., Tzanetakis, P., Anastasiadis, S.H., Fotakis, C., Adv. Mater. 20, 4049 (2008).Google Scholar
Ranella, A., Barberoglou, M., Bakogianni, S., Fotakis, C., Stratakis, E., Acta Biomater. 6, 2711 (2010).Google Scholar
Paradisanos, I., Fotakis, C., Anastasiadis, S.H., Stratakis, E., Appl. Phys. Lett. 107, 111603 (2015).Google Scholar
Papadopoulou, E.L., Barberoglou, M., Zorba, V., Manousaki, A., Pagkozidis, A., Stratakis, E., Fotakis, C., J. Phys. Chem. C 113, 2891 (2009).Google Scholar
Barberoglou, M., Zorba, V., Pagozidis, A., Fotakis, C., Stratakis, E., Langmuir 26, 13007 (2010).Google Scholar
Stratakis, E., Mateescu, A., Barberoglou, M., Vamvakaki, M., Fotakis, C., Anastasiadis, S.H., Chem. Commun. 46, 4136 (2010).Google Scholar
McDonald, J.C., Whitesides, G.M., Acc. Chem. Res. 35, 491 (2002).Google Scholar
Aoun, L., Weiss, P., Laborde, A., Ducommun, B., Lobjois, V., Vieu, C., Lab Chip 14, 2344 (2014).Google Scholar
Tanaka, Y., Morishima, K., Shimizu, T., Kikuchi, A., Yamato, M., Okano, T., Kitamori, T., Lab Chip 6, 230 (2006).Google Scholar
Liao, Y., Cheng, Y., Liu, C., Song, J., He, F., Shen, Y., Chen, D., Xu, Z., Fan, Z., Wei, X., Sugioka, K., Midorikawa, K., Lab Chip 13, 1626 (2013).Google Scholar
Sugioka, K., Cheng, Y., Lab Chip 12, 3576 (2012).CrossRefGoogle Scholar
He, F., Liao, Y., Lin, J., Song, J., Qiao, L., Cheng, Y., Sugioka, K., Sensors (Basel) 14, 19402 (2014).Google Scholar
Lin, D., He, F., Liao, Y., Lin, J., Liu, C., Song, J., Cheng, Y., J. Opt. 15, 025601 (2013).Google Scholar
Xu, B.B., Zhang, Y.-L., Xia, H., Dong, W.-F., Ding, H., Sun, H.-B., Lab Chip 13, 1677 (2013).Google Scholar
Sugioka, K., Cheng, Y., Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications (Springer, New York, 2013).Google Scholar
Sugioka, K., Cheng, Y., MRS Bull. 36, 1020 (2011).Google Scholar
Liao, Y., Song, J., Li, E., Luo, Y., Shen, Y., Chen, D., Cheng, Y., Xu, Z., Sugioka, K., Midorikawa, K., Lab Chip 12, 746 (2012).CrossRefGoogle Scholar
Sugioka, K., Cheng, Y., Appl. Phys. A 114, 215 (2014).Google Scholar
An, R., Li, Y., Dou, Y., Yang, H., Gong, Q., Opt. Express 13, 1855 (2005).Google Scholar
Ke, K., Hasselbrink, E.F., Hunt, A.J., Anal. Chem. 77, 5083 (2005).Google Scholar
Cheng, Y., Sugioka, K., Midorikawa, K., Opt. Lett. 29, 2007 (2004).Google Scholar
Kim, M., Hwang, D.J., Jeon, H., Hiromatsu, K., Grigoropoulos, C.P., Lab Chip 9, 311 (2009).Google Scholar
Haque, M., Zacharia, N.S., Ho, S., Herman, P.R., Biomed. Opt. Express 4, 1472 (2013).Google Scholar
Yang, T., Nava, G., Minzioni, P., Veglione, M., Bragheri, F., Lelii, F.D., Vazquez, R.M., Osellame, R., Cristiani, I., Biomed. Opt. Express 6, 2991 (2015).Google Scholar
Stratakis, E., Ranella, A., Fotakis, C., “Laser-Based Biomimetic Tissue Engineering,” in Laser Technology in Biomimetics: Basics and Applications, Schmidt, V., Belegratis, M.R., Eds. (Springer, Heidelberg, 2013), pp. 211236.Google Scholar
Papadopoulou, E.L., Samara, A., Barberoglou, M., Manousaki, A., Pagakis, S.N., Anastasiadou, E., Fotakis, C., Stratakis, E., Tissue Eng. C 16, 497 (2010).CrossRefGoogle Scholar
Simitzi, C., Stratakis, E., Fotakis, C., Athanassakis, I., Ranella, A., J. Tissue Eng. Regen. Med., published online December 26, 2013, http://dx.doi.org/10.1002/term.1853.Google Scholar
Simitzi, C., Efstathopoulos, P., Kourgiantaki, A., Ranella, A., Charalampopoulos, I., Fotakis, C., Athanassakis, I., Stratakis, E., Gravanis, A., Biomaterials 67, 115 (2015).CrossRefGoogle Scholar
Hench, L.L., Polak, J.M., Science 295, 1014 (2002).Google Scholar
Keselowsky, B.G., Collard, D.M., Garcia, A.J., Biomaterials 25, 5947 (2004).CrossRefGoogle Scholar
Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E., Science 276, 1425 (1997).Google Scholar
Dalby, M.J., Gadegaard, N., Tare, R., Andar, A., Riehle, M.O., Herzyk, P., Wilkinson, C.D.W., Oreffo, R.O.C., Nat. Mater. 6, 997 (2007).Google Scholar
McMurray, R.J., Gadegaard, N., Tsimbouri, P.M., Burgess, K.V., McNamara, L.E., Tare, R., Murawski, K., Kingham, E., Oreffo, R.O.C., Dalby, M.J., Nat. Mater. 10, 637 (2011).CrossRefGoogle Scholar
Jeon, H., Koo, S., Reese, W.M., Loskill, P., Grigoropoulos, C.P., Healy, K.E., Nat. Mater. 14, 918 (2015).Google Scholar
Discher, D.E., Janmey, P., Wang, Y.L., Science 310, 1139 (2005).Google Scholar
Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E., Cell 126, 677 (2006).Google Scholar
Jun, I., Chung, Y.-W., Heo, Y.-H., Han, H.-S., Park, J., Jeong, H., Lee, H., Lee, Y.B., Kim, Y.-C., Seok, H.-K., Shin, H., Jeon, H., ACS Appl. Mater. Interfaces 8, 3407 (2016).Google Scholar
Murugan, R., Ramakrishna, S., Tissue Eng. 13, 1845 (2007).CrossRefGoogle Scholar
Jun, I., Chung, Y.-W., Park, J., Han, H.-S., Park, J., Kim, S., Lee, H., Kim, S.H., Han, J.-H., Kim, H., Seok, H.-K., Kim, Y.-C., Jeon, H., Adv. Healthc. Mater. 5, 2396 (2016).Google Scholar
Sprague, E.A., Tio, F., Ahmed, S.H., Granada, J.F., Bailey, S.R., Circ. Cardiovasc. Interv. 5, 499 (2012).Google Scholar
Qin, X.H., Torgersen, J., Saf, R., Mühleder, S., Pucher, N., Ligon, S.C., Holnthoner, W., Redl, H., Ovsianikov, A., Stampfl, J., Liska, R., J. Polym. Sci. A Polym. Chem. 51, 4799 (2013).Google Scholar
Ovsianikov, A., Mironov, V., Stampfl, J., Liska, R., Expert Rev. Med. Devices 9, 613 (2012).Google Scholar
Ovsianikov, A., Deiwick, A., Van Vlierberghe, S., Pflaum, M., Wilhelmi, M., Dubruel, P., Chichkov, B., Materials 4, 288 (2011).Google Scholar
Raimondi, M.T., Eaton, S.M., Laganà, M., Aprile, V., Nava, M.M., Cerullo, G., Osellame, R., Acta Biomater. 9, 4579 (2013).Google Scholar
Mihailescu, M., Paun, I.A., Zamfirescu, M., Luculescu, C.R., Acasandrei, A.M., Dinescu, M., J. Mater. Sci. 51, 4262 (2016).Google Scholar
Marino, A., Filippeschi, C., Genchi, G.G., Mattoli, V., Mazzolai, B., Ciofani, G., Acta Biomater. 10, 4304 (2014).CrossRefGoogle Scholar