Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-15T19:13:07.767Z Has data issue: false hasContentIssue false

Molecular Biomimetics: Genetic Synthesis, Assembly, and Formation of Materials Using Peptides

Published online by Cambridge University Press:  31 January 2011


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In nature, the molecular-recognition ability of peptides and, consequently, their functions are evolved through successive cycles of mutation and selection. Using biology as a guide, it is now possible to select, tailor, and control peptide–solid interactions and exploit them in novel ways. Combinatorial mutagenesis provides a protocol to genetically select short peptides with specific affinity to the surfaces of a variety of materials including metals, ceramics, and semiconductors. In the articles of this issue, we describe molecular characterization of inorganic-binding peptides; explain their further tailoring using post-selection genetic engineering and bioinformatics; and finally demonstrate their utility as molecular synthesizers, erectors, and assemblers. The peptides become fundamental building blocks of functional materials, each uniquely designed for an application in areas ranging from practical engineering to medicine.

Research Article
Copyright © Materials Research Society 2008


1.Sarikaya, M., Tamerler, C., Jen, A.K.Y., Schulten, K., Baneyx, F., Nat. Mater. 2, 577 (2003).CrossRefGoogle Scholar
2.Brown, S., Nat. Biotechnol. 15, 269 (1997).CrossRefGoogle Scholar
3.Brown, S., Sarikaya, M., Johnson, E., J. Mol. Biol. 299, 725 (2000).CrossRefGoogle Scholar
4.Gaskin, D.J.H., Starck, K., Vulfson, E.N., Biotechnol. Lett. 22, 1211 (2000).CrossRefGoogle Scholar
5.Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., Belcher, M.A., Nature 405, 665 (2000).CrossRefGoogle Scholar
6.Li, C.M., Botsaris, G.D., Kaplan, D.L., Cryst. Growth Des. 2, 387 (2002).CrossRefGoogle Scholar
7.Naik, R.R., Brott, L., Carlson, S.J., Stone, M.O., J. Nanosci. Nanotechnol. 2, 1 (2002).CrossRefGoogle Scholar
8.Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.H., Lieber, K.H.M.L., Nano Lett. 5, 1429 (2005).CrossRefGoogle Scholar
9.Sarikaya, M., Tamerler, C., Schwartz, D.T., Baneyx, F., Annu. Rev. Mater. Res. 34, 373 (2004).CrossRefGoogle Scholar
10.Sano, K.I., Sasaki, H., Shiba, K., Langmuir 21, 3090 (2005).CrossRefGoogle Scholar
11.Dai, H., Choe, W.-S., Thai, C. K., Sarikaya, M., Traxler, B.A., Baneyx, F., Schwartz, D.T., J. Am. Ceram. Soc. 127, 15637 (2005).Google Scholar
12.McMillan, R.A., Howard, J., Zaluzec, N.J., Kagawa, H.K., Mogul, R., Li, Y.F., Paavola, C.D., Trent, J.D., J. Am. Chem. Soc. 127, 2800 (2005).CrossRefGoogle Scholar
13.Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S., Curr. Opin. Biotechnol. 16, 63 (2005).CrossRefGoogle Scholar
14.Douglas, T., Young, M., Science 312, 873 (2006).CrossRefGoogle Scholar
15.Slocik, J.M., Moore, J.T., Wright, D.W., Nano Lett. 7, 1054 (2007).CrossRefGoogle Scholar
16.Pons, T., Medintz, I.L., Sapsford, K.E., Higashiya, S., Grimes, A.F., English, D.S., Mattoussi, H., Nano Lett. 7, 3157 (2007).CrossRefGoogle Scholar
17.Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J., Nature 382, 607 (1996).CrossRefGoogle Scholar
18.Niemeyer, C.M., Angew. Chem. Int. Ed. 40, 4128 (2001).3.0.CO;2-S>CrossRefGoogle Scholar
19.Whiley, B.J., J. Phys. Chem. 15666 (2006).CrossRefGoogle Scholar
20.Sönnichensen, C., Reinhard, B.M., Liphardt, J., Alivisatos, A.P., Nat. Biotechnol. 23, 741 (2005).CrossRefGoogle Scholar
21.Donhauser, Z.J., Mantooth, B.A., Kelly, K.F., Bumm, L.A., Monnell, J.D., Stapleton, J.J., Price, D.W. Jr, Rawlett, A.M., Allara, D.L., Tour, J.M., Weiss, P.S., Science 292, 2303 (2001).CrossRefGoogle Scholar
22.Cui, Y., Lieber, C.M., Science 291, 851 (2001).CrossRefGoogle Scholar
23.Brown, A.R., Jarrett, C.P., de Leeuw, D.M., Matters, M., Synth. Met. 88, 37 (1997).CrossRefGoogle Scholar
24.Ma, H., Zin, M.T., Zareie, M.H., Kang, M.-S., Kang, S.H., Kim, K.S., Reed, B.W., Tamerler, C., Sarikaya, M., Jen, A.K.-Y., J. Nanosci. Nanotechnol. 7 (8), 249 (2007).Google Scholar
25.Daniel, M.-C., Astruc, D., Chem. Rev. 104, 293 (2004);CrossRefGoogle Scholar
Ouyang, M., Awscholom, D.D., Science 301, 1024 (2003).Google Scholar
26.Branden, C.-I., Tooze, J., Intruduction to Protein Structure (Garland, New York, 1999).Google Scholar
27.Petrouna, I.P., Arnold, F.H., Curr. Opin. Biotechnol. 11, 325 (2000).CrossRefGoogle Scholar
28.Sarikaya, M., Proc. Natl. Acad. Sci. U.S.A. 96, 14183 (1999).CrossRefGoogle Scholar
29.Lowenstam, H.A., Weiner, S., On Biomineralization (Oxford University Press, 1988).Google Scholar
30.Mann, S., Ed., Biomimetic Materials Chemistry (VCH, New York, 1996).Google Scholar
31.Sarikaya, M., Aksay, I.A., Eds., Biomimetics: Processing of Materials (AIP, New York, 1996).Google Scholar
32.Schultze, S., Harauz, G., Beveridge, T.I., J. Bacteriol. 174, 7971 (1992).CrossRefGoogle Scholar
33.Frankel, R., Iron Biominerals (Plenum, New York, 1991).CrossRefGoogle Scholar
34.Klaus, T., Joerger, R., Olsson, E., Granqvist, C.-G., Proc. Natl. Acad. Sci. U.S.A. 96, 13611 (1999).CrossRefGoogle Scholar
35.Andersen, S.O., Hojrup, P., Roepstorff, P., Insect Biochem. Mol. Biol. 25, 153 (1995).CrossRefGoogle Scholar
36.Berman, A., Addadi, L., Weiner, S., Nature 331, 546 (1988).Google Scholar
37.Sarikaya, M., Fong, H., Sunderland, N., Flinn, B.D., Mayer, G., J. Mater. Res. 16, 1420 (2001).CrossRefGoogle Scholar
38.Cariolou, M.A., Morse, D.E., J. Comp. Biol. 157, 717 (1988).Google Scholar
39.Jackson, A.P., Vincent, J.F.V., Turner, R.M., Proc. R. Soc. London, Ser. B 234, 415 (1988).Google Scholar
40.Sarikaya, M., Gunnison, K.E., Yasrebi, M., Aksay, I.A., MRS Symp. Proc., Rieke, P.C., Ed., 174, 109 (MRS, Pittsburgh, PA, 1990).Google Scholar
41.Sarikaya, M., Aksay, I.A., in Results and Problems in Cell Differentiation, Case, S.T., Ed., 19, 1 (Springer, New York, 1992).Google Scholar
42.Mann, S., Nature 332, 119 (1988).CrossRefGoogle Scholar
43.Weiner, S., Addadi, L., J. Mater. Chem. 7, 689 (1997).CrossRefGoogle Scholar
44.Aksay, I.A., Baer, E., Sarikaya, M., Tirrell, T., Eds., MRS Proc. 255 (MRS, Pittsburgh, PA, 1994).Google Scholar
45.Hogan, B.L.M., Genes Dev. 10 (13), 1580 (1996).CrossRefGoogle Scholar
46.Fong, H., White, S.N., Paine, M.L., Luo, W., Snead, M.L., Sarikaya, M., J. Bone Miner. Res. 18, 2052 (2003).CrossRefGoogle Scholar
47.Glimcher, M., Nimni, M., Connect. Tissue Res. 27, 73 (1992).Google Scholar
48.Hull, D., Introduction to Composite Materials (Pergamon, New York, 1981).Google Scholar
49.Termine, J.D., Belcourt, A.B., Christner, P.J., Conn, K.M., Nylen, M.U., J. Biol. Chem. 255 (20), 9760 (1980).CrossRefGoogle Scholar
50.Paine, M.L., Snead, M.L., J. Bone Miner. Res. 12, 221 (1996).CrossRefGoogle Scholar
51.Fong, H., Sarikaya, M., White, S.N., Snead, M.L., J. Mater. Sci. Eng., C 7, 119 (2000).CrossRefGoogle Scholar
52.Lagerstom, M., Dahl, N., Nakahori, Y., Nakagome, Y., Backman, B., Landegren, U., Pettersson, U., Genomics 10 (4), 971 (1991).CrossRefGoogle Scholar
53.Ball, P., Nature 409, 413 (2001).CrossRefGoogle Scholar
54.Seeman, N.C., Belcher, A.M., Proc. Natl. Acad. Sci. U.S.A. 99, 6452 (2002).CrossRefGoogle Scholar
55.Tamerler, C., Sarikaya, M., Acta Biomater. 3, 289 (2007).CrossRefGoogle Scholar
56.Naik, R.R., Stringer, S.J., Agarwal, G., Jones, S.E., Stone, M.O., Nat. Mater. 1, 169 (2002).CrossRefGoogle Scholar
57.Mao, C., Flynn, C.E., Hayhurst, A., Sweeney, R., Qi, J., Georgiou, G., Iverson, B., Belcher, A.M., Proc. Natl. Acad. Sci. U.S.A. 100, 6946 (2003).CrossRefGoogle Scholar
58.Sano, K., Yoshii, S., Yamashita, I., Shiba, K., Nano Lett. 7, 3200 (2007).CrossRefGoogle Scholar
59.Klem, M.T., Willits, D., Solis, D.J., Belcher, A.M., Young, M., Douglas, T., Adv. Funct. Mater. 15, 1489 (2005).CrossRefGoogle Scholar
60.Zin, M.T., Munro, A.M., Gungormus, M., Wong, N.Y., Ma, H., Tamerler, C., Ginger, D. S., Sarikaya, M., Jen, A.K.-Y., J. Mater. Chem. 17, 866 (2007).CrossRefGoogle Scholar
61.Smith, G.P., Petrenko, A., Chem. Rev. 97, 391 (1997).CrossRefGoogle Scholar
62.Stahl, S., Uhlen, M., Trends Biotechnol. 15 (5), 185 (1997).CrossRefGoogle Scholar
63.Benhar, I., Biotechnol. Adv. 19, 1 (2001).CrossRefGoogle Scholar
64.Amstatz, P., Forrer, P., Zahnd, C., Plückthun, C.A., Curr. Opin. Biotechnol. 12, 400 (2001).CrossRefGoogle Scholar
65.Wittrup, K.D., Curr. Opin. Biotechnol. 12, 395 (2001).CrossRefGoogle Scholar
66.Ueda, M., J. Mol. Catal. B: Enzym. 28, 139 (2004).CrossRefGoogle Scholar
67.Thai, C.K., Dai, H.X., Sastry, M.S.R., Sarikaya, M., Schwartz, D.T., Baneyx, F., Biotechnol. Bioeng. 87, 129 (1994).CrossRefGoogle Scholar
68.Tamerler, C., Oren, E.E., Duman, M., Venkatasubramanian, E., Sarikaya, M., Langmuir 22, 7712 (2006).CrossRefGoogle Scholar
69.Sano, K., Shiba, K., J. Am. Chem. Soc. 125, 14234 (2003).CrossRefGoogle Scholar
70.Kulp, J.L., Sarikaya, M., Evans, J.S., J. Mater. Chem. 14, 2325 (2004).CrossRefGoogle Scholar
71.Oren, E.E., Tamerler, C., Sarikaya, M., Nano Lett. 5 (3), 415 (2005).CrossRefGoogle Scholar
72.Barth, B.V., Constantini, G., Kern, K., Nature 437, 671 (2005).CrossRefGoogle Scholar
73.Kroger, N., Deutzman, R., Sumper, M., Science 286, 1129 (1999).CrossRefGoogle Scholar
74.Gaskin, D.J.H., Strack, K., Vulfson, E.N., Biotechnol. Lett. 22, 1211 (2000).CrossRefGoogle Scholar
75.Cha, J.N., Shimizu, K., Zhou, Y., Christiansen, S.C., Chmelka, B.F., Stucky, G.D., Morse, D.E., Proc. Nat. Acad. Sci. U.S.A. 96, 361 (1999).CrossRefGoogle Scholar
76.Ratner, B., Schoen, F., Hoffman, A., Lemons, J., Biomaterials Science: Introduction to Materials in Medicine (Academic Press, San Diego, 1996).Google Scholar
77.Mrksich, M., Curr. Opin. Chem. Biol. 6, 794 (2002).CrossRefGoogle Scholar
78.Pauling, L., Nature 24 (10), 1375 (1946).Google Scholar
79.Barth, J.V., Weckesser, J., Trimarchi, G., Vladimirova, M., De Vita, A., Cai, C., Brune, H., Gunter, P., Kern, K., J. Am. Chem. Soc. 124, 7991 (2002).CrossRefGoogle Scholar
80.Tomasio, S.D., Walsh, T.R., Mol. Phys. 105, 221 (2007).CrossRefGoogle Scholar
81.Evans, J.S., Curr. Opin. Colloid Interface Sci. 8, 48 (2003).CrossRefGoogle Scholar
82.Oren, E.E., Tamerler, C., Sahin, D., Hnilova, M., Seker, U.O.S., Sarikaya, M., Samudrala, R., Bioinformatics 23, 2816 (2007).CrossRefGoogle Scholar
83.Seker, O.U.S., Wilson, B., Dincer, S., Kim, I.W., Oren, E.E., Evans, J.S., Tamerler, C., Sarikaya, M., Langmuir 23, 7895 (2007).CrossRefGoogle Scholar
84.Jung, L.S., Campbell, C.T., Chinowsky, T.M., Mar, M.N., Yee, S.S., Langmuir 14, 5636 (1988).CrossRefGoogle Scholar
85.Czenderna, A.W., Lu, C., Applications of Piezoelectric Quartz Crystal Microbalances, Methods and Phenomena (Elsevier, New York, 1984).Google Scholar
86.Bailey, L.E., Kambhampati, D., Kanazawa, K.K., Knoll, W., Frank, C.W., Langmuir 18, 479 (2002).CrossRefGoogle Scholar
87.Whitesides, G.M., Mathias, J.P., Seto, C.T., Science 254, 1312 (1991).CrossRefGoogle Scholar
88.Schreiber, R., Prog. Surf. Sci. 65, 151 (2000).CrossRefGoogle Scholar
89.Roukes, M.L., Understanding Nanotechnology (Warner Books, New York, 2002).Google Scholar
90.Ratner, M., Ratner, D., Nanotechnology (Prentice Hall, Upper Saddle River, NJ, 2003).Google Scholar
91.Cutler, P., Proteomics 3, 3 (2003).CrossRefGoogle Scholar
92.Zhang, S., Nat. Biotechnol. 21, 1171 (2003).CrossRefGoogle Scholar
93.Tamerler, C., Duman, M., Oren, E.E., Gungormus, M., Xiong, X., Kacar, T., Parviz, B.A., Sarikaya, M., Small 2, 1372 (2006).CrossRefGoogle Scholar
94.Kacar, T., So, C., Tamerler, C., Sarikaya, M., J. MSE-C (2008) in press.Google Scholar
95.Gungormus, M., Fong, H., Kim, I.W., Evans, J.S., Tamerler, C., Sarikaya, M., Biomacromole-cules (2008) in press.Google Scholar
96.Parviz, B.A., Trends in Microbiol. 14 (9), 373 (2006).CrossRefGoogle Scholar
97.Xia, Y.N., Halas, N.J., MRS Bull. 30, 338 (2005).CrossRefGoogle Scholar
98.Prasad, P.N., Biomaterials and Nanophotonics (Wiley, Hoboken, NJ, 2004).CrossRefGoogle Scholar
99.Hartgerink, J.D., Beniash, E., Stupp, S.I., Science 294, 1684 (2001).CrossRefGoogle Scholar
100.Temlin, M.F., Stoll, D., Schrenk, M., Trends Biotechnol. 20, 160 (2002).CrossRefGoogle Scholar