Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T17:49:17.530Z Has data issue: false hasContentIssue false

Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nanoporous metals prepared by the corrosion of an alloy can take the form of monolithic, millimeter-sized bodies containing approximately 1015 nanoscale ligaments per cubic millimeter. The ligament size can reach down to the very limits of stability of nanoscale objects. The processes by which nanoporous metals are formed have continued to be fascinating, even though their study in relation to surface treatment, metal refinement, and failure mechanisms can be traced back to ancient times. In fact, the prospect of using alloy corrosion as a means of making nanomaterials for fundamental studies and functional applications has led to a revived interest in the process. The quite distinct mechanical properties of nanoporous metals are one of the focus points of this interest, as relevant studies probe the deformation behavior of crystals at the lower end of the size scale. Furthermore, the coupling of bulk stress and strain to the forces acting along the surface of nanoporous metals provide unique opportunities for controlling the mechanical behavior through external variables such as the electrical or chemical potentials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Rouquerol, J., Avnir, D., Fairbridge, C.W., Pure Appl. Chem. 66, 1739 (1994).CrossRefGoogle Scholar
2Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., Sieradzki, K., Nature 410, 450 (2001).CrossRefGoogle Scholar
3Gleiter, H., Weissmüller, J., Wollersheim, O., Würschum, R., Acta Mater. 49, 737 (2001).CrossRefGoogle Scholar
4Weissmüller, J., Viswanath, R.N., Kramer, D., Zimmer, P., Würschum, R., Gleiter, H., Science 300, 312 (2003).CrossRefGoogle Scholar
5Biener, J., Wittstock, A., Zepeda-Ruiz, L., Biener, M.M., Kramer, D., Viswanath, R.N., Weissmüller, J., Bäumer, M., Hamza, A.V., Nat. Mater. 8, 47 (2009).CrossRefGoogle Scholar
6Sagmeister, M., Brossmann, U., Landgraf, S., Würschum, R., Phys. Rev. Lett. 96, 156601 (2006).CrossRefGoogle Scholar
7Dasgupta, S., Gottschalk, S., Kruk, R., Hahn, H., Nanotechnology 19, 435203 (2008).CrossRefGoogle Scholar
8Drings, H., Viswanath, R.N., Kramer, D., Lemier, C., Weissmüller, J., Würschum, R., Appl. Phys. Lett. 88, 253103 (2006).CrossRefGoogle Scholar
9Ghosh, S., Lemier, C., Weissmüller, J., IEEE Trans. Magn. 42, 3617 (2006).CrossRefGoogle Scholar
10Reti, L., Isis 56, 307 (1965).CrossRefGoogle Scholar
11Seath, J., Beamish, F.E., Ind. Eng. Chem., Anal. Ed. 10, 639 (1938).CrossRefGoogle Scholar
12Bengough, G.D., J. Inst. Met. 27, 51 (1922).Google Scholar
13Bengough, G.D., May, R., J. Inst. Met. 32, 81 (1924).Google Scholar
14Pickering, H.W., Wagner, C., J. Electrochem. Soc. 114, 698 (1967).CrossRefGoogle Scholar
15Pickering, H.W., Kim, Y.S., Corros. Sci. 22, 621 (1982).CrossRefGoogle Scholar
16Pickering, H.W., J. Electrochem. Soc. 117, 8 (1970).CrossRefGoogle Scholar
17Stillwell, C.W., Turnipseed, E.S., Phys. A 4, 263 (1933).Google Scholar
18Forty, A.J., Nature 282, 597 (1979).CrossRefGoogle Scholar
19Forty, A.J., Durkin, P., Philos. Mag. A 42, 295 (1980).CrossRefGoogle Scholar
20Forty, A.J., Rowlands, G., Philos. Mag. A 43, 171 (1981).CrossRefGoogle Scholar
21Durkin, P., Forty, A.J., Philos. Mag. A 45, 95 (1982).CrossRefGoogle Scholar
22Sieradzki, K., Corderman, R.R., Shukla, K., Newman, R.C., Philos. Mag. A 59, 713 (1989).CrossRefGoogle Scholar
23Erlebacher, J., J. Electrochem. Soc. 151, C614 (2004).CrossRefGoogle Scholar
24Fritz, J.D., Pickering, H.W., J. Electrochem. Soc. 138, 3209 (1991).CrossRefGoogle Scholar
25Artymowicz, D.M., Newman, R.C., Erlebacher, J.D., Electrochem. Soc. Trans. 3 (31), 499 (2006).Google Scholar
26Artymowicz, D.M., Newman, R.C., Erlebacher, J.D., Philos. Mag. (2009), in press.Google Scholar
27Sieradzki, K., J. Electrochem. Soc. 140, 2868 (1993).CrossRefGoogle Scholar
28Rugolo, J., Erlebacher, J., Sieradzki, K., Nat. Mater. 5, 946 (2006).CrossRefGoogle Scholar
29Dursun, A., Pugh, D.V., Corcoran, S.G., Electrochem. Solid State Lett. 6, B32 (2003).CrossRefGoogle Scholar
30Parks, B.W., Fritz, J.D., Pickering, H.W., Scripta Metall. 23, 951 (1989).CrossRefGoogle Scholar
31Newman, R.C., Shahrabi, T., Sieradzki, K., Corros. Sci. 28, 873 (1988).CrossRefGoogle Scholar
32Newman, R.C., Corros. Sci. 33, 1653 (1992).CrossRefGoogle Scholar
33Kramer, D., Viswanath, R.N., Parida, S., Weissmüller, J., Mater. Res. Soc. Symp. Proc. 876E, R2.5 (2005).CrossRefGoogle Scholar
34Snyder, J., Asanithi, P., Dalton, A.B., Erlebacher, J., Adv. Mater. 20 (10), 1876 (2008).CrossRefGoogle Scholar
35Lucey, V.F. Br., Corros. J. 1, 9 (1965).CrossRefGoogle Scholar
36Lucey, V.F. Br., Corros. J. 1, 53 (1965).CrossRefGoogle Scholar
37Pickering, H.W., Corrosion 25, 289 (1969).CrossRefGoogle Scholar
38Gorse, D., Legris, A., Pastol, J.L., Maiki, B., J. Electrochem. Soc. 146, 3702 (1999).Google Scholar
39Sieradzki, K., Kim, J.S., Cole, A.T., Newman, R.C., J. Electrochem. Soc. 134, 1635 (1987).CrossRefGoogle Scholar
40Sieradzki, K., Newman, R.C., J. Phys. Chem. Solids 48, 1101 (1987).CrossRefGoogle Scholar
41Kelly, R.G., Frost, A.J., Shahrabi, T., Newman, R.C., Metall. Trans. A 22A, 531 (1991).CrossRefGoogle Scholar
42Saito, M., Smith, G.S., Newman, R.C., Corros. Sci. 35, 411 (1993).CrossRefGoogle Scholar
43Friedersdorf, F., Sieradzki, K., Corrosion 52, 331 (1996).CrossRefGoogle Scholar
44Barnes, A., Senior, N.A., Newman, R.C., Metall. Trans. A (2009), in press.Google Scholar
45Ding, Y., Kim, Y.-J., Erlebacher, J., Adv. Mater. 16, 1897 (2004).CrossRefGoogle Scholar
46Parida, S., Kramer, D., Volkert, C.A., Rösner, H., Erlebacher, J., Weissmüller, J., Phys. Rev. Lett. 97, 035504 (2006).CrossRefGoogle Scholar
47Jin, H.J., Kurmanaeva, L., Schmauch, J., Rösner, H., Ivanisenko, Y., Weissmüller, J., Acta Mater. 57, 2665 (2009).CrossRefGoogle Scholar
48Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M., Satcher, J.H., J. Appl. Phys. 97, 024301 (2005).CrossRefGoogle Scholar
49Rösner, H., Parida, S., Kramer, D., Volkert, C.A., Weissmüller, J., Adv. Eng. Mater. 9, 535 (2007).CrossRefGoogle Scholar
50Hirth, J.P., Srolovitz, D.J., Philos. Mag. A 69, 341 (1994).CrossRefGoogle Scholar
51Senior, N.A., Newman, R.C., Nanotechnology 17, 2311 (2006).CrossRefGoogle Scholar
52Sun, Y., Kucera, K.P., Burger, S.A., Balk, T.J., Scripta Mater. 58, 1018 (2008).CrossRefGoogle Scholar
53Plateau, J., Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires (Gauthier-Villars, Paris, 1873).Google Scholar
54Strutt, J.W. (Lord Rayleigh), Philos. Mag. 34, 145 (1892).Google Scholar
55Fujita, T., Qian, L.H., Inoke, K., Erlebacher, J., Chen, M.W., Appl. Phys. Lett. 92, 251902 (2008).CrossRefGoogle Scholar
56Hakamada, M., Mabuchi, M., Nano Lett. 6, 882 (2006).CrossRefGoogle Scholar
57Li, R., Sieradzki, K., Phys. Rev. Lett. 68, 1168 (1992).CrossRefGoogle Scholar
58Qian, L.H., Chen, M.W., Appl. Phys. Lett. 91, 083105 (2007).CrossRefGoogle Scholar
59Jin, H.J., Parida, S., Kramer, D., Weissmüller, J., Surf. Sci. 602, 3588 (2008).CrossRefGoogle Scholar
60Gibson, L.J., Ashby, M.F., Cellular Solids: Structure and Properties (Cambridge University Press, UK, 1997).CrossRefGoogle Scholar
61Kramer, D., Weissmüller, J., Surf. Sci. 601, 3042 (2007).CrossRefGoogle Scholar
62Gurtin, M.E., Murdoch, A.I., Arch. Ration. Mech. Anal. 57, 291 (1975).CrossRefGoogle Scholar
63Weissmüller, J., Cahn, J.W., Acta Mater. 45, 1899 (1997).CrossRefGoogle Scholar
64Diao, J., Gall, K., Dunn, M.L., Nat. Mater. 2, 656 (2003).CrossRefGoogle Scholar
65Kramer, D., Viswanath, R.N., Weissmüller, J., Nano Lett. 4, 793 (2004).CrossRefGoogle Scholar
66Smetanin, M., Viswanath, R.N., Kramer, D., Beckmann, D., Koch, T., Kibler, L., Kolb, D.M., Weissmüller, J., Langmuir 24, 8561 (2008).CrossRefGoogle Scholar
67Weigend, F., Evers, F., Weissmüller, J., Small 2, 1497 (2006).CrossRefGoogle Scholar
68Gurtin, M.E., Weissmüller, J., Larché, F., Philos. Mag. A 78, 1093 (1998).CrossRefGoogle Scholar
69Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L., J. Mech. Phys. Solids 53, 1574 (2005).CrossRefGoogle Scholar
70Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S.. Xu, J., Li, Y.D., Wang, J.X., Yu, D.P., Phys. Rev. B 73, 235409 (2006).CrossRefGoogle Scholar
71Cuenot, S., Fretigny, C., Demoustier-Champagne, S., Nysten, B., Phys. Rev. B 69, 165410 (2004).CrossRefGoogle Scholar
72Nilsson, S.G., Borrise, X., Montelius, L., Appl. Phys. Lett. 85, 3555 (2004).CrossRefGoogle Scholar
73Li, X.X., Ono, T., Wang, Y.L., Esashi, M., Appl. Phys. Lett. 83, 3081 (2003).CrossRefGoogle Scholar
74Mathur, A., Erlebacher, J., Appl. Phys. Lett. 90, 061910 (2007).CrossRefGoogle Scholar
75Nan, C.-W., Progr. Mater. Sci. 37, 1 (1993).CrossRefGoogle Scholar
76Andrews, E.W., Gioux, G., Onck, P., Gibson, L.J., Int. J. Mech. Sci. 43, 701 (2001).CrossRefGoogle Scholar
77Liu, Z., Chuah, C.S.L., Scanlon, M.G., Acta Mater. 51, 365 (2003).CrossRefGoogle Scholar
78Ramamurty, U., Kumaran, M.C., Acta Mater. 52, 181 (2004).CrossRefGoogle Scholar
79Toivola, Y., Stein, A., Cook, R.F., J. Mater. Res. 19, 260 (2004).CrossRefGoogle Scholar
80Wilsea, M., Johnson, K.L., Ashby, M.F., Int. J. Mech. Sci. 17, 457 (1975).CrossRefGoogle Scholar
81Hodge, A.M., Biener, J., Hayes, J.R., Bythrow, P.M., Volkert, C.A., Hamza, A.V., Acta Mater. 55, 1343 (2007).CrossRefGoogle Scholar
82Gioux, G., McCormack, T.M., Gibson, L.J., Int. J. Mech. Sci. 42, 1097 (2000).CrossRefGoogle Scholar
83Miller, R.E., Int. J. Mech. Sci. 42, 729 (2000).CrossRefGoogle Scholar
84Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., Abraham, F.F., Nano Lett. 6, 2379 (2006).CrossRefGoogle Scholar
85Volkert, C.A., Lilleodden, E.T., Kramer, D., Weissmüller, J., Appl. Phys. Lett. 89, 061920 (2006).CrossRefGoogle Scholar
86Sun, Y., Balk, T.J., Scripta Mater. 58, 727 (2008).CrossRefGoogle Scholar
87Wu, B., Heidelberg, A., Boland, J.J., Nat. Mater. 4, 525 (2005).CrossRefGoogle Scholar
88Simone, A.E., Gibson, L.J., Acta Mater. 46, 3109 (1998).CrossRefGoogle Scholar
89Seker, E., Gaskins, J.T., Bart-Smith, H., Zhu, J., Reed, M.L., Zangari, G., Kelly, R., Begley, M.R., Acta Mater. 55 (14), 4593 (2007).CrossRefGoogle Scholar
90Lee, D., Wei, X., Chen, X., Zhao, M., Jun, S.C., Hone, J., Herbert, E.G., Oliver, W.C., Kysar, J.W., Scripta Mater. 56 (5), 437 (2007).CrossRefGoogle Scholar
91Lee, D., Wei, X.D., Zhao, M.H., Chen, X., Jun, S.C., Hone, J., Kysar, J.W., Modell. Simul. Mater. Sci. Eng. 15 (1), S181 (2007).CrossRefGoogle Scholar
92Hakamada, M., Mabuchi, M., Scripta Mater. 56, 1003 (2007).CrossRefGoogle Scholar
93Biener, J., Hodge, A.M., Hamza, A.V., in Micro and Nano Mechanical Testing of Materials and Devices, Yang, F., Li, J.C.M., Eds. (Springer, New York, 2008), p. 121.CrossRefGoogle Scholar
94Jin, H.J., Kramer, D., Ivanisenko, Y., Weissmüller, J., Adv. Eng. Mater. 9, 849 (2007).CrossRefGoogle Scholar
95Volkert, C.A., Lilleodden, E.T., Philos. Mag. 86, 5567 (2006).CrossRefGoogle Scholar
96Newman, R.C., Corcoran, S.G., Erlebacher, J., Aziz, M.J., Sieradzki, K., MRS Bull. 24 (7), 24 (1999).CrossRefGoogle Scholar
97Koh, S.J.A., Lee, H.P., Nanotechnology 17, 3451 (2006).CrossRefGoogle Scholar
98Seker, E., Gaskins, J.T., Bart-Smith, H., Zhu, J., Reed, M.L., Zangari, G., Kelly, R., Begley, M.R., Acta Mater. 56, 324 (2008).CrossRefGoogle Scholar
99Zepeda-Ruiz, L.A., Sadigh, B., Biener, J., Hodge, A.M., Hamza, A.V., Appl. Phys. Lett. 91, 101907 (2007).CrossRefGoogle Scholar
100Sun, Y., Ye, J., Shan, Z., Minor, A.M., Balk, T.J., JOM 59, 54 (2007).CrossRefGoogle Scholar