Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T14:33:38.277Z Has data issue: false hasContentIssue false

Nanostructured Cerium Oxide “Ecocatalysts”

Published online by Cambridge University Press:  03 May 2012

Get access

Extract

Catalysts based on cerium oxide are now used as effective oxidation systems in numerous environmental applications. Cerium oxide was introduced into the catalysis field relatively recently, in 1976, and not as a catalyst initially. Rather, it was chosen as the key oxygen-storage component of the three-way catalyst (TWC) used in automotive exhausts. Accordingly, ceria is used to extend the air/fuel ratio window in the exhaust gas, releasing or accepting oxygen, respectively, under fuel-rich or fuellean conditions, so that the noble metal catalyst operates at the desirable stoichiometric air/fuel ratio, at which it effectively converts all three gaseous pollutants—CO, hydrocarbons, and NO—to innocuous products. A solid solution of cerium and zirconium oxides is used in today's catalytic converters because of its higher oxygen-storage capacity (OSC) compared with pure ceria. In the years that followed the introduction of ceria into the catalytic converter, many additional merits of cerium oxide were realized, first as an active catalytic component of the TWC and subsequently as a catalyst and sorbent in various industrial applications. A review article by Trovarelli on ceria-based catalysts is a good recent compilation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Trovarelli, A.Catal. Rev.—Sci. Eng. 38 (1996) p.439.CrossRefGoogle Scholar
2.Bunluesin, T.Cordatos, H. and Gorte, R.J.J.Catal. 157 (1995) p.222.CrossRefGoogle Scholar
3.Bunluesin, T. and Gorte, R.J.Appl. Catal. B 15 (1998) p.107.CrossRefGoogle Scholar
4.Bhattacharyya, A.A.Woltermann, G.M.Yoo, J.S.Karch, J.A. and Cormier, W.E.Ind. Eng. Chem. Res. 27 (1988) p.1356.CrossRefGoogle Scholar
5.Gandhi, H.S.Piken, A.G.Shelef, M. and Delosh, R.G. in SAE Tech. Paper Ser. No. 760201 (Society of Automotive Engineers, Warrendale, PA, 1976) p.55.Google Scholar
6.Jen, H.W.Graham, G.W.Chun, W.McCabe, R.W.Cuif, J.P.Deutsch, S.E. and Touret, O.Catal. Today 50 (1999) p.309.CrossRefGoogle Scholar
7.Yao, H.C. and Yao, Y.F. Yu, J. Catal. 86 (1984) p.254.CrossRefGoogle Scholar
8.Diwell, A.F.Rajaram, R.R.Shaw, H.A. and Truex, T.J.Stud. Surf. Sci. Catal. 71 (1991) p.139.CrossRefGoogle Scholar
9.Liu, W. and Flytzani-Stephanopoulos, M., J.Catal. 153 (1995) p.304; p.317.CrossRefGoogle Scholar
10.Li, Y.Fu, Q. and Flytzani-Stephanopoulos, M., Appl. Catal. B: Environ. 27 (2000) p.179.CrossRefGoogle Scholar
11.Weber, A. M.S. thesis Tufts University, 1999.Google Scholar
12.Liu, W.Wadia, C. and Flytzani-Stephanopoulos, M., Catal. Today 28 (4)(1996) p.391.CrossRefGoogle Scholar
13.Fu, Q.Weber, A. and Flytzani-Stephanopoulos, M., Catal. Lett. (2001) in press.Google Scholar
14.Fu, Q.Kudriavtseva, S.Saltsburg, H. and Flytzani-Stephanopoulos, M., presented at the 17th North American Catalysis Society Meeting, Toronto, Canada, June 3-7, 2001.Google Scholar
15.Meng, V.V. and Kay, D.A.R. in High Technology Ceramics, edited by Vincinzini, P. (Elsevier Science Publishers, Amsterdam, 1987) p. 2247.Google Scholar
16.Li, Z. and Flytzani-Stephanopoulos, M., Ind. Eng. Chem. Res. 36 (1997) p.187.CrossRefGoogle Scholar
17.Zeng, Y.Zhang, S.Groves, F.R. and Harrison, D.P.Chem. Eng. Sci. 54 (1999) p.3007.CrossRefGoogle Scholar
18.Liu, W. ScD dissertation, Massachusetts Institute of Technology, 1995.Google Scholar
19.Flytzani-Stephanopoulos, M., Zhu, T. and Li, Y., Catal. Today 62 (2000) p.145.CrossRefGoogle Scholar
20.Zhu, T.Dreher, A. and Flytzani-Stephanopoulos, M., Appl. Catal. B21 (1999) p. 103.CrossRefGoogle Scholar
21.Zhu, T. and Flytzani-Stephanopoulos, M., Appl. Catal. A208 (2001) p.403.CrossRefGoogle Scholar
22.Zhu, T. PhD dissertation, Tufts University, 2000.Google Scholar
23.Amenomiya, Y.Emesh, A.Oliver, K. and Pleizer, G. in Proc. 9th Int. Congress on Catalysis, edited by Philips, M. and Ternan, M. (Chemical Institute of Canada, Ottawa, 1988) p.634.Google Scholar
24.Kundakovic, L J. PhD dissertation, Tufts University, 1998.Google Scholar
25.Fu, Q. PhD dissertation, Tufts University, in progress.Google Scholar
26.Kundakovic, Lj. and Flytzani-Stephanopoulos, M., J. Catal. 179 (1998) p.203.CrossRefGoogle Scholar
27.Tschöpe, A., Liu, W.Flytzani-Stephanopoulos, M., and Ying, J.Y.J. Catal. 157 (1995) p.42.CrossRefGoogle Scholar
28.Satterfield, C.N.Heterogeneous Catalysis in Industrial Practice, 2nd ed. (McGraw-Hill, New York, 1991).Google Scholar
29.Chiang, Y.M.Lavik, E.B.Kosacki, I.Tuller, H.L. and Ying, J.Y.J. Electroceram. 1 (1997) p.7.CrossRefGoogle Scholar
30.Cunningham, J.Cullinane, D.Sanz, J.Rojo, J.M.Soria, X.A. and Fierro, J.L.G.J.Chem. Soc., Faraday Trans. 88 (1992) p.3233.CrossRefGoogle Scholar
31.Liu, W. and Flytzani-Stephanopoulos, M., Chem. Eng. J. 64 (1996) p.283.Google Scholar
32.Lamonier, C.Ponchel, A.D'Huysser, A., and Jalowiecki-Duhamel, L., Catal. Today 50 (1999) p.247.CrossRefGoogle Scholar
33.Aboukais, A.Bennani, A.Aissi, C.F.Guelton, M. and Vedrine, J.C.Chem. Mater. 4 (1992) p.977.CrossRefGoogle Scholar
34.Qi, X. PhD dissertation, Tufts University, in progress.Google Scholar
35.Li, C.Domen, K.Maruya, K.I. and Onishi, T.J. Catal. 123 (1990) p.436.CrossRefGoogle Scholar
36.Rodriguez, J.A.Jirsak, T.Freitag, A.Hanson, J.C.Larese, J.Z. and Chaturvedi, S.Catal. Lett. 62 (1999) p.113.CrossRefGoogle Scholar