Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T01:55:47.669Z Has data issue: false hasContentIssue false

Nuclear Magnetic Resonance Spectroscopy of Geological Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

From the earliest days of extractive metallurgy, materials scientists and geoscientists have shared common ground. Experimental approaches, such as phase equilibrium and structural studies, are often similar, as are the questions asked in attempts to connect microscopic fundamentals to technologically desired or naturally observed bulk properties. The actual materials studied by both groups are often similar or even identical, such as silicate ceramics and glasses, magnetic oxides, and crystals based on the perovskite structure.

Nuclear magnetic resonance (NMR) was applied to solid-state physics shortly after the technique was invented in 1946. Even at the start, many of the samples placed in magnets in physics laboratories were large single crystals of naturally occurring minerals such as gypsum (CaSO4 · 2H2O) and fluorite (CaF2), perhaps borrowed from mineralogist colleagues. In the last 10 years, however, applications to both the earth and materials science have rapidly expanded because of improvements in both technological capabilities and basic theory. Only work on inorganic materials will be discussed here, although 13C NMR studies have proved very useful in characterizing the complex, often inseparable mixtures of large organic molecules found in soils, kerogen, and coal. I will not attempt to thoroughly review the broad and fast growing literature in inorganic applications. Instead, I have chosen examples, primarily from our recent studies, to illustrate the scope of what is and will become possible.

Several recent books clearly introduced the basic concepts of solid-state NMR, and applications to crystalline and glassy silicates as well as NMR at high temperature have been reviewed recently.

Type
Earth Materials
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wilson, M.A., NMR Techniques and Applications in Geochemistry and Soil Chemistry (Pergamon, Oxford, 1987).Google Scholar
2.Engelhardt, G. and Michel, D., High-Resolution Solid-State NMR of Silicates and Zeolites (Wiley, New York, 1987).Google Scholar
3.Fyfe, C.A., Solid State NMR for Chemists (CFC Press, Guelph, 1983).Google Scholar
4.Kirkpatrick, R.J., Dunn, T., Schramm, S., Smith, K.A., Oestrike, R., and Turner, G., in Structure and Bonding in Noncrystalline Solids, edited by Wolrafen, G.E. and Revesz, A.G. (Plenum Press, New York, 1986) p. 302.Google Scholar
5.Kirkpatrick, R.J., in Spectroscopic Methods in Mineralogy and Geology, edited by Hawthorne, F.C. (Mineralogical Society of America, Washington, DC) p. 341.Google Scholar
6.Eckert, H., Ber. Bunsenges Phys. Chem. 94 (1990) p. 1062.CrossRefGoogle Scholar
7.Stebbins, J.F., in Spectroscopic Methods in Mineralogy and Geology, edited by Hawthorne, F.C. (Mineralogical Society of America, Washington, DC) p. 405.Google Scholar
8.Stebbins, J.F., Chem. Rev. 91 (1991) p. 1353.CrossRefGoogle Scholar
9.Tossell, J.A., J. Non-Cryst. Solids 120 (1990) p. 13.CrossRefGoogle Scholar
10.Holmes, R.R., Chem. Rev. 90 (1990) p. 17.CrossRefGoogle Scholar
11.Stebbins, J.F. and McMillan, P., Am. Mineral. 74 (1989) p. 965.Google Scholar
12.Xue, X., Stebbins, J.F., Kanzaki, M., and Tronnes, R.G., Science 245 (1989) p. 962.CrossRefGoogle Scholar
13.Xue, X., Stebbins, J.F., Kanzaki, M., McMillan, P.F., and Poe, B., Am. Mineral. 76 (1991) p. 8.Google Scholar
14.Kanzaki, M., Stebbins, J.F., and Xue, X., Geophys. Res. Lett. 18 (1990) p. 463.CrossRefGoogle Scholar
15.Grimmer, A-R., Wieker, W., von Lampe, F., Fechner, E., Peter, R., and Molgedey, G., Z. Chem. 20 (1980) p. 453.CrossRefGoogle Scholar
16.Brawer, S., Relaxation in Viscous Liquids and Glasses (American Ceramic Society, Columbus, OH, 1985).Google Scholar
17.Angell, C.A., Cheeseman, P.A., and Tamaddon, S., Bull. Minéral. 106 (1983) p. 87.CrossRefGoogle Scholar
18.Stebbins, J.F., Nature 351 (1991) p. 638.CrossRefGoogle Scholar
19.Sato, R.K., McMillan, P.F., Dennison, P., and Dupree, R., J. Phys. Chem. 95 (1991) p. 4484.Google Scholar
20.Sato, R.K., McMillan, P.F., Dennison, P., and Dupree, R., Phys. Chem. Glasses 32 (1991) p. 149.Google Scholar
21.Bunker, B.C., Kirkpatrick, R.J., Brow, R.K., Turner, G.L., and Nelson, C., J. Am. Ceram. Soc. 74 (1991) p. 1430.CrossRefGoogle Scholar
22.Stebbins, J.F., Farnan, I., and Klabunde, U., J. Am. Ceram. Soc. 11 (1989) p. 2198.CrossRefGoogle Scholar
23.Yang, W-H., Kirkpatrick, R.J., and Henderson, D.M., Am. Mineral. 71 (1986) p. 712.Google Scholar
24.Sheriff, B.L. and Hartman, J.S., Can. Mineral. 23 (1985) p. 205.Google Scholar
25.Weiss, C.A. Jr., Altaner, S.P., and Kirkpatrick, R.J., Am. Mineral. 72 (1987) p. 935.Google Scholar
26.Circone, S., Navrotsky, A., Kirkpatrick, R.J., and Graham, C.M., Am. Mineral. 76 (1991) p. 1485.Google Scholar
27.Putnis, A., Salje, E., Redfern, S.A.T., Fyfe, C.A., and Strobl, H., Phys. Chem. Minerals 14 (1987) p. 446.CrossRefGoogle Scholar
28.Oestrike, R., Yang, W-H., Kirkpatrick, R.J., Hervig, R.L., Navrotsky, A., and Montez, B., Geochim. Cosmochim. Acta 51 (1987) p. 2199.CrossRefGoogle Scholar
29.Rose, N.M. and Bird, D.K., J. Petrol. 28 (1987) p. 1193.CrossRefGoogle Scholar
30.Papike, J.J. and Zoltai, T., Am. Mineral. 52 (1967) p. 974.Google Scholar
31.Bird, D.K. and Helgeson, H.C., Am. J. Sci. 280 (1980) p. 907.CrossRefGoogle Scholar
32.Helgeson, H.C., Delaney, J.M., Nesbitt, H.W., and Bird, D.K., Am. J. Science 278-A (1978) 229 pages.Google Scholar
33. D. III, Westrum, E.F. Jr., and Essene, E.J., Geochim. Cosmochim. Acta 44 (1980) p. 61.Google Scholar
34.Liou, J.G., Am. Mineral. 56 (1972) p. 507.Google Scholar
35.Ghose, S. and Tsang, T., Am. Mineral. 58 (1973) p. 748.Google Scholar
36.Chmelka, B.F., Mueller, K.T., Pines, A., Stebbins, J.F., Wu, Y., and Zwanziger, J.W., Nature 339 (1989) p. 42.CrossRefGoogle Scholar
37.Mueller, K.T., Wu, Y., Chmelka, B.F., Stebbins, J.F., and Pines, A., J. Am. Chem. Soc. 113 (1990) p. 32.CrossRefGoogle Scholar
38.Baltisberger, J., Grandinetti, P., Eastman, M., Pines, A., Farnan, I., and Stebbins, J.F., EOS, Trans. Am. Geophys. Union 72 (1991) p. 572.Google Scholar
39.Stebbins, J.F. and Farnan, I., Science 255 (1992) p. 586.CrossRefGoogle Scholar
40.Dupree, R., Holland, D., and Williams, D.S., J. Non-Cryst. Solids 81 (1986) p. 185.CrossRefGoogle Scholar
41.Dupree, R., Holland, D., and Mortuza, M.G., J. Non-Cryst. Solids 116 (1990) p. 148.CrossRefGoogle Scholar
42.Maekawa, H., Maekawa, T., Kawamura, K., and Yokokawa, T., J. Non-Cryst. Solids 127 (1991) p. 53.CrossRefGoogle Scholar
43.Murdoch, J.B., Stebbins, J.F., and Carmichael, I.S.E., Am. Mineral. 70 (1985) p. 332.Google Scholar
44.Brandriss, M.E. and Stebbins, J.F., Geochim. Cosmochim. Acta 52 (1988) p. 2659.CrossRefGoogle Scholar
45.McMillan, P.F., Wolf, G.H., and Poe, B.T., Chem. Geol. (in press).Google Scholar
46.Mysen, B.O., J. Geophys. Res. 95 (1990) p. 15733.CrossRefGoogle Scholar
47.Gaskell, P.H., Eckersley, M.C., Barnes, A.C., and Chieux, P., Nature 350 (1991) p. 675.CrossRefGoogle Scholar
48.Stolper, E.M., Geochim. Cosmochim. Acta 46 (1982) p. 2609.CrossRefGoogle Scholar
49.Kohn, S.C., Dupree, R., and Smith, M.E., Geochim. Cosmochim. Acta 53 (1989) p. 2925.CrossRefGoogle Scholar
50.Farnan, I., Kohn, S.C., and Dupree, R., Geochim. Cosmochim. Acta 51 (1987) p. 2869.CrossRefGoogle Scholar
51.Merwin, L., Keppler, H., and Sebald, A., EOS, Trans. Am. Geophys. Union 72 (1991) p. 573.Google Scholar
52.Yang, W-H. and Kirkpatrick, R.J., Geochim. Cosmochim. Acta 53 (1989) p. 805.CrossRefGoogle Scholar
53.Massiot, D., Taulelle, F., and Coutures, J.P., Colloq. Phys 51 (1991) C5425.Google Scholar
54.Taulelle, F., Coutures, J.P., Massiot, D., and Rifflet, J.P., Bull Magn. Reson. 11 (1989) p. 318.Google Scholar
55.Farnan, I. and Stebbins, J.F., J. Am. Chem. Soc. 112 (1990) p. 32.CrossRefGoogle Scholar
56.Stebbins, J.F., Farnan, I., and Xue, X., Chem. Geol. (in press).Google Scholar
57.Farnan, I. and Stebbins, J.F., J. Non-Cryst. Solids 124 (1990) p. 207.CrossRefGoogle Scholar
58.Rigamonti, A., Adv. Phys. 33 (1984) p. 115.CrossRefGoogle Scholar
59.Stebbins, J.F., Farnan, I., Williams, E.H., and Roux, J., Phys. Chem. Minerals 16 (1989) p. 763.CrossRefGoogle Scholar