Hostname: page-component-76dd75c94c-qmf6w Total loading time: 0 Render date: 2024-04-30T08:25:28.518Z Has data issue: false hasContentIssue false

Phase Transitions, Superconductivity, and Ferromagnetism in Fullerene Systems

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

By virtue of their unique structures, fullerenes exhibit novel chemical transformations. Particularly pertinent to this article are the interesting properties exhibited by fullerenes in the solid state. These molecules are spherical or near-spherical in shape. Molecules with high point-group symmetry, which are not bound strongly in the solid state, tend to crystallize into structures with long-range periodicity of the molecular centers of mass, but the molecular orientations are random or even dynamically disordered. When dynamically disordered, the

molecules rotate about some preferred axis. C60 and C70 satisfy the criteria for such orientationally disordered solids and exhibit rich phase behavior in the solid state. Since C60 has high electron affinity, it forms anion salts with alkali and alkaline-earth metals as well as with strong organic donor molecules. With tetrakis dimethylaminoethylene (TDAE), which is a very powerful electron donor, C60 forms a 1:1 solid that is ferromagnetic. C60-TDAE is the molecular organic ferromagnet with the highest Tc (of 16 K) known to date. Some of the alkali and alkaline-earth fullerides, on the other hand, show superconductivity, with transition temperatures going up to 33K. We shall briefly examine some of these solid-state properties.

Type
Fullerenes
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Heiney, P.A., J. Phys. Chem. Solids 53 (1992) p. 1333.CrossRefGoogle Scholar
2.Heiney, P.A. and Fischer, J.E., J. Phys. Chem. Solids 54 (1993) p. 1725.Google Scholar
3.Allemand, P.M., Khemani, K.C., Koch, A., Wudl, F., Holczer, K., Donovan, S., Gruner, G., and Thompson, J.D., Science 253 (1991) p. 301.CrossRefGoogle Scholar
4.Murphy, D.W., Rosseinsky, M.J., Fleming, R.M., Tycko, R., Ramirez, A.P., Haddon, R.C., Siegrist, T., Dabbagh, G., Tully, J.C., and Walstedt, R.E., J. Phys. Chem. Solids 53 (1992) p. 1321.CrossRefGoogle Scholar
5.Johnson, R.D., Bethune, D.S., and Yannoni, C.S., Acc. Chem. Res. 25 (1992) p. 169.CrossRefGoogle Scholar
6.Cheng, A., Klein, M., Parinello, M., and Sprik, M., Philos. Trans. R. Soc. London 341 (1992) p. 133.Google Scholar
7.Chakrabarti, A., Yashonath, S., and Rao, C.N.R., Chem. Phys. Lett. 215 (1993) p. 519.CrossRefGoogle Scholar
8.Narasimhan, L.R., Stoneback, D.N., Hebbard, A.F., Haddon, R.C., and Patel, C.K.N., Phys. Rev. B 46 (1992) p. 2591.CrossRefGoogle Scholar
9.Akers, K., Fu, K., Zhang, P., and Moskovits, M., Science 259 (1993) p. 1152.CrossRefGoogle Scholar
10.Ramasesha, S., Singh, A.K., Seshadri, R., Sood, A.K., and Rao, C.N.R., Chem. Phys. Lett. 220 (1994) p. 203.CrossRefGoogle Scholar
11.Sood, A.K., Chandrabhas, N., Muthu, D.V.S., Jayaraman, A., Kumar, N., Krishnamurthy, H.R., Pradeep, T., and Rao, C.N.R., Solid State Commun. 81 (1992) p. 87.CrossRefGoogle Scholar
12.Snoke, D.W., Raptis, Y.S., and Syassen, K., Phys. Rev. B 45 (1992) p. 14419.CrossRefGoogle Scholar
13.Nunez-Regueiro, M., Monceau, P., Rassat, A., Bernier, P., and Zahab, A., Nature 354 (1991) p. 289.CrossRefGoogle Scholar
14.Hirai, H., Kondo, K., Yoshizawa, N., and Shiraishi, M., Appl. Phys. Lett. 64 (1994) p. 1797.CrossRefGoogle Scholar
15.Sprik, M., Cheng, A., and Klein, M.L., Phys. Rev. Lett. 69 (1992) p. 1660.CrossRefGoogle Scholar
16.Sworakowski, J., Palewska, K., and Bertault, M., Chem. Phys. Lett. 220 (1994) p. 197.CrossRefGoogle Scholar
17.Varma, V., Seshadri, R., Govindaraj, A., Sood, A.K., and Rao, C.N.R., Chem. Phys. Lett. 203 (1993) p. 545.CrossRefGoogle Scholar
18.Chandrabhas, N., Jayaram, K., Muthu, D.V. S., Sood, A.K., Seshadri, R., and Rao, C.N.R., Phys. Rev. B 47 (1993) p. 10963.CrossRefGoogle Scholar
19.Chandrabhas, N., Sood, A.K., Muthu, D.V.S., Sundar, C.S., Bharathi, A., Hariharan, Y., and Rao, C.N.R. (to be published); Sood, A.K., Chandrabhas, N., Muthu, D.V.S., Hariharan, Y., Bharathi, A., and Sundar, C.S., Philos. Mag. A (1994) in press.Google Scholar
20.Weaver, J.W., J. Phys. Chem. Solids 53 (1992) p. 1433.CrossRefGoogle Scholar
21.Kortan, A.R., Kopylov, N., Glarum, S., Gyorgy, E.M., Ramirez, A.P., Fleming, R.M., Thiel, P.A., and Haddon, R.C., Nature 355 (1992) p. 529; 360 (1992) p. 566.CrossRefGoogle Scholar
22.Seshadri, R., Rastogi, A., Bhat, S.V., Ramaseha, S., and Rao, C.N.R., Solid State Commun. 85 (1993) p. 971.CrossRefGoogle Scholar
23.Muthu, D.V.S., Shashikala, M.N., Sood, A.K., Seshadri, R., and Rao, C.N.R., Chem. Phys. Lett. 217 (1994) p. 146.CrossRefGoogle Scholar
24.Stephens, P.W., Cox, D., Lauher, J.W., Mihaly, L., Wiley, J.B., Allemand, P.M., Hirsch, A., Holczer, K., Li, Q., Thompson, J.D., and Wudl, F., Nature 355 (1992) p. 331.CrossRefGoogle Scholar