Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-04T05:15:02.871Z Has data issue: false hasContentIssue false

Photorefractive Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

There is a growing demand for nonlinear optical materials for a variety of applications—lasers and coherent sources, electrooptic devices, communication technologies, and optical processors and computers. Nonlinear optics is a vast field requiring materials with diverse performance features. Photorefractive (PR) materials, which experience a change in the refractive index under the effect of inhomogeneous illumination, constitute a relevant branch of the field. They behave as third-order nonlinear materials, which can be considered, in general, as photorefractive. However, the materials more commonly designated as photorefractives involve a charge-transport-induced nonlinearity, and it is these materials which are the object of this issue of the MRS Bulletin.

At variance with conventional (often designated as Kerr) nonlinear materials, photorefractives are sensitive not to the local light intensity but to its spatial variation; i.e., they are nonlocal materials. This feature makes them more complicated to deal with than their conventional counterparts, since a χ(3) susceptibility cannot be properly defined (except as a k-dependent function). On the other hand, this sensitivity gives them some unique and interesting features. In particular, an interference light pattern illuminating the crystal and the generated index grating are phase-shifted, leading to remarkable beam coupling and amplification effects. The coupling gain can be markedly enhanced by applying alternating electric fields or by oscillating the interference fringes with a piezoelectric mirror. Efficient image amplifiers have been made using this effect.

Type
Photorefractive Materials
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Photorefractive Materials and their Applications, edited by Günter, P. and Huignard, J.P., Vol. 1 (Springer-Verlag, Berlin, 1988).CrossRefGoogle Scholar
2.Kukhtarev, N.V., Markov, V.B., Odulov, S.G., Soskin, M.S., and Vinetskii, V.L., Ferroelectrics 22 (1979) p. 961.CrossRefGoogle Scholar
3.Huignard, J.P. and Marrakchi, A., Opt. Lett. 6 (1981) p. 622.CrossRefGoogle Scholar
4.Chen, C.T., Kim, D.M., and von der Linde, D., IEEE J. Quantum Electron. QE-16 (1980) p. 126.CrossRefGoogle Scholar
5.Smirl, A., Bohnert, K., Valley, G.C., Mullen, R.A., and Boggers, T.E, J. Opt. Soc. Am. B 6 (1989) p. 606.CrossRefGoogle Scholar
6.Pauliat, G. and Roosen, G., J. Opt. Soc. Am. B 7 (1990) p. 2259.CrossRefGoogle Scholar
7.Disdier, L. and Roosen, G., Opt. Commun. 88 (1992) p. 559.CrossRefGoogle Scholar
8.Optical Phase Conjugation, edited by Fischer, R.A. (Academic Press, New York, 1983).Google Scholar
9.Cronin-Golomb, M., Fischer, B., White, J.O., and Yariv, A., IEEE J. Quantum Electron. QE-20 (1984) p. 12.CrossRefGoogle Scholar
10.Feinberg, J., Opt. Lett. 7 (1982) p. 486.CrossRefGoogle Scholar
11.Properties of LiNbO3, EMIS Datareview Series No. 5 (INSPEC, London, 1989).Google Scholar
12.Klein, M.B. and Schwartz, R.N., J. Opt. Soc. Am. B 2 (1986) p. 293.CrossRefGoogle Scholar
13.Arizmendi, L., Cabrera, J.M., and Agulló-López, F., Int. J. Optoelectronics 7 (1992) p. 149.Google Scholar
14.Fabre, J.C., Brotons, E., Halter, P.V., and Roosen, G.Int. J. Optoelectronics 4 (1989) p. 459.Google Scholar
15.Agulló-López, F. and Karpuschko, F., Opt. Commun. 100 (1993) p. 181.CrossRefGoogle Scholar
16.Nolte, D.D., Olson, D.H., Doran, G.E., Knox, W.A., and Glass, A.M., J. Opt. Soc. Am. B 7 (1990) p. 2217.CrossRefGoogle Scholar
17.Partovi, A., Glass, A.M., Olson, D.H., Zydzik, G.J., O'Bryan, H.M., Chin, T.H., and Knox, W.H., Appl. Phys. Lett. 62 (1993) p. 464.CrossRefGoogle Scholar
18.Capasso, F., Luryi, S., Tsang, W.T., Bethea, G.C., and Levine, B.F., Phys. Ren Lett. 51 (1983) p. 2318.CrossRefGoogle Scholar
19.Sutter, K. and Günter, P., J. Opt. Soc. Am. B 7 (1990) p. 2274.CrossRefGoogle Scholar
20.Ducharme, S., Scott, J.C., Tweig, R.J., and Moerner, W.E., Phys. Rev. Lett. 66 (1991) p. 1864.CrossRefGoogle Scholar
21.Pauliat, G. and Roosen, G., Int. J. Opt. Computing 2 (1991) p. 271.Google Scholar
22.Optical Processing and Computing, edited by Arsenault, H., Szoplik, T., and Macuko, B. (Academic Press, Orlando, 1989).Google Scholar
23.White, J.O. and Yariv, A., Appl. Phys. Lett. 37 (1980) p. 5.CrossRefGoogle Scholar
24.Cheng, L., Opt. Computing and Processing (June 1992) p. 1.Google Scholar
25.Owechko, Y., IEEE J. Quantum Electron. QE-25 (1989) p. 619.CrossRefGoogle Scholar
26.Chiou, A. and Yeh, P., Appl. Opt. 29 (1990) p. 1111.CrossRefGoogle Scholar
27.Marrachki, A. and Hubbard, W.M., Opt. Lett. 16 (1991) p. 417.CrossRefGoogle Scholar
28.Psaltis, D., Brady, D., Gu, X., and Lin, S., Nature 343 (1990) p. 325.CrossRefGoogle Scholar