Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T16:01:18.824Z Has data issue: false hasContentIssue false

Pulsed Laser Deposition History and Laser-Target Interactions

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The laser, as a source of “pure” energy in the form of monochromatic and coherent photons, is enjoying ever increasing popularity in diverse and broad applications from drilling micron-sized holes on semiconductor devices to guidance systems used in drilling a mammoth tunnel under the English Channel. In many areas such as metallurgy, medical technology, and the electronics industry, it has become an irreplaceable tool.

Like many other discoveries, the various applications of the laser were not initially defined but were consequences of natural evolution led by theoretical studies. Shortly after the demonstration of the first laser, the most intensely studied theoretical topics dealt with laser beam-solid interactions. Experiments were undertaken to verify different theoretical models for this process. Later, these experiments became the pillars of many applications. Figure 1 illustrates the history of laser development from its initial discovery to practical applications. In this tree of evolution, Pulsed Laser Deposition (PLD) is only a small branch. It remained relatively obscure for a long time. Only in the last few years has his branch started to blossom and bear fruits in thin film deposition.

Conceptually and experimentally, PLD is extremely simple, probably the simplest among all thin film growth techniques. Figure 2 shows a schematic diagram of this technique. It uses pulsed laser radiation to vaporize materials and to deposit thin films in a vacuum chamber. However, the beam-solid interaction that leads to evaporation/ablation is a very complex physical phenomenon. The theoretical description of the mechanism is multidisciplinary and combines equilibrium and nonequilibrium processes. The impact of a laser beam on the surface of a solid material, electromagnetic energy is converted first into electronic excitation and then into thermal, chemical, and even mechanical energy to cause evaporation, ablation, excitation, and plasma formation.

Type
Pulsed Laser Deposition
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cheung, J.T. and Sankur, H., CRC Critical Reviews in Solid State and Materials Science 15 (1988) p. 63.Google Scholar
2. Beech, F. and Boyd, I.W. in Photochemical Processing of Electronic Materials, edited by Boyd, I.W. and Jackman, R.B. (Academic Press, New York, 1991) p. 387429.Google Scholar
3. Smith, H.M. and Turner, A.F., Appl. Opt. 4 (1965) p. 147.Google Scholar
4. Knox, B.E., Mater. Res. Bull. 3 (1968) p. 329.Google Scholar
5. Knox, B.E. and Ban, V.S., Mater. Res. Bull. 3 (1968) p. 337.Google Scholar
6. Ban, V.S. and Kramer, D.A., J. Mater. Sci. 5 (1970) p. 978.Google Scholar
7. Schwartz, H. and Tourtellotte, H.A., J. Vac. Sci. Technol. 6 (1969) p. 3763.Google Scholar
8. Barr, W.P., J. Phys. E 2 (1969) p. 2.Google Scholar
9. Horwitz, J.S., Grabowski, K.S., Chrisey, D.B., and Leuchtner, R.E., Appl. Phys. Lett. 59 (1991) p. 1565.Google Scholar
10. Desserre, J. and Eloy, J.F., Thin Solid Films 29 (1975) p. 29.Google Scholar
11. Gaponov, S.V., Gudkov, A.A., Luskin, B.M., Luchin, V.I., and Salashchenko, N.N., Sov. Tech. Phys. Lett. 5 (1979) p. 195.Google Scholar
12. Gaponov, S.V., Luskin, B.M., Nesterov, B.A., and Salashchenko, N.N., Sov. Phys. Solid State 19 (1977) p. 1736.Google Scholar
13. Gaponov, S.V., Luskin, B.M., and Salashchenko, N.N. 39 (1981) p. 301.Google Scholar
14. Gaponov, S.V., Klyuenkov, E.B., Nesterov, B.A., Salashchenko, N.N., and Kheifets, M.I., Sov. Tech. Phys. Lett. 5 (1979) p. 193.Google Scholar
15. Osterreicher, H., Bittner, H., and Kothari, B., J. Solid State Chem. 26 (1978) p. 97.Google Scholar
16. Tang, S.P., Wicke, B.G., and Friichtenicht, J., J. Chem. Phys. 68 (1978) p. 5471.Google Scholar
17. Wei, P.S.P., Hall, R.B., and Maher, W.E., J. Chem. Phys. 59 (1973) p. 3692.Google Scholar
18. Cheung, J.T., Niizawa, G., Moyle, J., Ong, N.P., Paine, B.M., and Vreeland, T. Jr., J. Vac. Sci. Technol. A4 (1986) p. 2086.Google Scholar
19. Ong, N.P., Moyle, J.K., Bajaj, J., and Cheung, J.T., J. Vac. Sci. Technol. A5 (1987) p. 3079.Google Scholar
20. Cheung, J.T. and Madden, J., J. Vac. Sci. Technol. B5 (1987) p. 705.Google Scholar
21. Cheung, J.T., Cirlin, E-H., and Otsuka, N., Appl. Phys. Lett. 53 (1988) p. 310.Google Scholar
22. Lubben, D., Barnett, S.A., Suzuki, K., Gorbatikin, S., and Greene, J.E., J. Vac. Sci. Technol. B3 (1985) p. 968.Google Scholar
23. Sankur, H., Bunning, W.J., DeNatale, J., and Flintoff, J. F., Appl. Phys. Lett. 65 (1989) p. 2475.Google Scholar
24. Sankur, H., Appl. Opt. 25 (1986) p. 1962.Google Scholar
25. Curl, R.F. and Smalley, R.E., Scientific American (October, 1991) p. 54.Google Scholar
26. Chan, C.L. and Mazumder, J., J. Appl. Phys. 62 (1987) p. 4579.Google Scholar
27. Ready, J.F., J. Appl. Phys. 36 (1965) p. 462.Google Scholar
28. Von Allmen, M., J. Appl. Phys. 47 (1976) p. 5460.Google Scholar
29. Andrews, J.G. and Atthey, D.R., J. Inst. Math. Appl. 15 (1975) p. 59.Google Scholar
30. Afana'ev, Y.V. and Krokhin, O.N., Sov. Phys. JETP 25 (1967) p. 639.Google Scholar
31. Anisimov, S.I., Sov. Phys. JETP 27 (1968) p. 182.Google Scholar
32. Hassanein, A.M., Kulcinski, G.L., and Wolfer, W.G., Nucl. Eng. Design/Fusion 1 (1984) p. 307.Google Scholar
33. Olstad, R.A. and Olander, E.R., J. Appl. Phys. 46 (1975) p. 1499.Google Scholar
34. For recent reviews on PLD of YBCO see Reference 2 or Laser Ablation for Material Synthesis, edited by Paine, D.C. and Bravman, J.C. (Mater. Res. Symp. Proc. 191, Pittsburgh, PA, 1990).Google Scholar
35. Ready, J.F., Effects of High Power Radiation (Academic Press, New York, 1971).Google Scholar
36. Inam, A., Wu, X.D., Venkatesan, T., Ogale, S.B., Chang, C.C., Dijkkamp, D., Appl. Phys. Lett. 51 (1987) p. 1112.Google Scholar
37. Foltyn, S.R., Muenchausen, R.E., Estler, R.C., Peterson, E., Hutchinson, W.B., Ott, K.C., Nogar, N.S., and Hubbard, K.M. in Laser Ablation for Materials Synthesis, edited by Payne, D.C. and Bravman, J.C. (Mater. Res. Soc. Symp. Proc. 191, Pittsburgh, PA, 1990) p. 205.Google Scholar
38. Koran, G., Gupta, A., Baserman, R.J., Lutyche, M.I., and Laibowitz, R.B., Appl. Phys. Lett. 55 (1989) p. 2450.Google Scholar
39. Singh, R. and Narayan, J., Phys. Rev. B 41 (1990) P. 8843.Google Scholar
40. Venkatesan, T., Wu, X.D., Inam, A., Wachman, J.B., Appl. Phys. Lett. 52 (1988) p. 1193.Google Scholar
41. Fulton, S.E., Dye, R.C., Ott, K.C., Peterson, E., Hubbard, K.M., Hutchinson, W., Muenchausen, R.E., Estler, R.C., and Wu, X.D., Appl. Phys. Lett. 59 (1991) p. 594.Google Scholar
42. Chen, C.H., McCann, M.P., and Phillips, R.C., Appl. Phys. Lett. 53 (1988) p. 2701.Google Scholar
43. Dye, P., Freenough, R.D., Issa, A., and Key, P.H., Appl. Phys. Lett. 53 (1988) p. 534.Google Scholar
44. Yoo, K.M., Alfano, R.R., Fuo, X., Sarachik, M.P. and Issacs, L.L., Appl. Phys. Lett. 54 (1989) p. 1278.Google Scholar
45. Zheng, J.P., Huang, Q., Shaw, T., and Kwok, H.S., Appl. Phys. Lett. 54 (1989) p. 280.Google Scholar
46. Dijkkamp, D., Venkatesan, T., Wu, X.D., Shaheen, S.A., Jisrawi, N., Min-Lee, Y.H., McClean, W.L., and Croft, M., Appl. Phys. Lett. 51 (1987) p. 619.Google Scholar
47. Weimer, W.A., Appl. Phys. Lett. 53 (1988) p. 2698.Google Scholar
48. Auciello, O., Athavale, S., Hankins, O.E., Sito, M., Schreiner, A.F., and Biunno, N., Appl. Phys. Lett. 53 (1988) p. 72.Google Scholar
49. Geohegan, D.B. and Mashburn, D.N., Appl. Phys. Lett. 55 (1989) p. 2345.Google Scholar
50. Kwok, H.S., Shaw, D.T., Ying, Q.Y., Zheng, Z.P., Witanachchi, S., Petrou, E., and Kim, H.S., Proc. SPIE 1187 (1989) p. 161.Google Scholar
51. Cheng, N.H., Ying, Q.Y., Sheng, J.P, and Kwok, H.S., J. Appl. Phys. 69 (1991) p. 6349.Google Scholar
52. Otis, C.E. and Dreyfus, R.W., Phys. Rev. Lett. 67 (1991) p. 2102.Google Scholar
53. Estler, R.C. and Nogar, N.S., J. Appl. Phys. 69 (1991) p. 1654.Google Scholar
54. Dijkkamp, D., Venkatesan, T., Wu, X.D., Shaheen, S.A., Jisrarvi, N., Min-Lee, Y.H., McClean, W.L. and Croft, M., Appl. Phys. Lett. 51 (1987) p. 619.Google Scholar
55. Weidman, L. and Helvajian, H., J. Appl. Phys. 70 (1991) p. 233.Google Scholar
56. Chrisey, D.B., Horwitz, J.S., and Leuchtner, R.E., Thin Solid Films, (submitted, 1991).Google Scholar
57. Chen, C.H., Murphy, T.M., and Phillips, R.C., Appl. Phys. Lett. 57 (1990) p. 937.Google Scholar
58. Becker, C.H. and Pallix, J.B., J. Appl. Phys. 64 (1988) p. 5152.Google Scholar
59. Dupendant, H., Favigan, J.P., Fivord, D., Lienard, A., Rebouillat, J.P, and Souche, Y., Appl Surf. Sci. 43 (1989) p. 369.Google Scholar
60. Neifled, R.A., Potenziani, E., Sinclair, W.R., Hill, W.T. III, Turner, B., and Pinkas, A., Appl. Phys. Lett. 69 (1991) p. 1107.Google Scholar
61. Brongersma, S.H., Kools, J.C.S., Bailer, T.S., Beijerinck, H.C., and Dieleman, J., Appl. Phys. Lett. 59 (1991) p. 1311.Google Scholar
62. Nogar, N.S., Dye, R.C., Estler, R.C., Foltyn, S.R., Muenchausen, R.E., and Wu, X.D., in Proceedings of Laser Ablation Workshop, Oak Ridge, (1990) (to be published).Google Scholar
63. Sputtering by Particle Bombardment, edited by Behrisch, R. (Springer Verlag, Berlin, 1983).Google Scholar
64. Kelly, R. and Dreyfus, R.W., Nucl. Instrum. Methods B32 (1988) p. 314.Google Scholar
65. Dyer, P.E., Issa, A., Key, P.H., Appl. Phys. Lett. 57 (1990) p. 186.Google Scholar
66. Gupta, A., Baren, B., Caseny, K.G., Hussy, B.W., and Kelly, R., Appl. Phys. Lett. 59 (1991) p. 1302.Google Scholar
67. Hirshfelder, J.O., Curtis, C.E, and Bird, R.B., Molecular Theory ofGasses and Liquid (John Wiley and Sons, New York, 1954).Google Scholar
68. Dye, R.C., Muenchausen, R.E., and Nogar, N.S., Chem. Phys. Lett. 181 (1991) p. 531.Google Scholar