Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T09:19:07.427Z Has data issue: false hasContentIssue false

The Road to Commercialization of Vapor-Phase-Grown Diamond

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Considering all materials, diamond has many superior properties such as elastic constant (hardness), thermal conductivity, transparency to optical visible light and x-rays, a wide-bandgap semiconductor, and negative electron affinity. These properties lead to various applications in many industries. Because of the recent successful development of vapor-phase-growth technology, large-area diamond is available at a low manufacturing cost. However the commercialization of diamond at this stage is limited to tools, speaker diaphragms, heatsinks, and optical windows. For each application, diamond utilization is limited.

In this article, three avenues on the road to commercialization of vapor-phase-grown diamond will be discussed. The categories appear in Table I with the properties of diamond and its applications. First, applications already commercialized are briefly reviewed, and the requirements for expanding their market are discussed. Second, the technologies and applications coming in the near term are introduced. Last, future candidate applications for diamond are introduced along with technical obstacles to be overcome.

Type
Diamond Films: Recent Developments
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yanagisawa, M. and Komaki, K., New Diamond (Japanese) 38 (1995) p. 34.Google Scholar
2.Tanaka, K., Yashiki, T., Nakamura, T., Kumazawa, Y., Fujimori, N., Nakai, T., and Urakawa, N., Sumitomo Elec. Tech. Rev. 33 (1992) p. 136.Google Scholar
3.Iguchi, T., Harano, K., Tanaka, K., Kumazawa, Y., Shiomi, H., Tuno, T., and Fujimori, N., Sumitomo Elec. Tech. Rev.. 51 (1997) p. 113.Google Scholar
4.Tanabe, K. and Fujimori, N., New Diamond 6 (1990) p. 26.Google Scholar
5.Nagai, M., Yamamoto, Y., Tanabe, K., Kumazawa, Y., and Fujimori, N., in Proc. Int. Symp. on Microelectronics, vol. 302 (The International Microelectronics and Packaging Society, 1997).Google Scholar
6.Lu, G. and Bigelow, L.K., Diamond Rel. Mater. 1 (1992) p. 34.CrossRefGoogle Scholar
7.Sakae, H., Aoyagi, H., Oura, M., Kimura, H., Ohta, T., Kimura, H., Shiwaku, T., Yamamoto, S., Sugiyama, H., Tanabe, K., Kobashi, K., and Kitamuro, H., J. Synchrotron Radiat. 4 (1997) p. 204.CrossRefGoogle Scholar
8.Nakahata, H., Hachigo, A., Shikata, S., and Fujimori, N., in Proc. IEEE Ultrasonics Conf., vol. 377 (Institute of Electrical and Electronics Engineers, 1992).Google Scholar
9.Shikata, S., Nakahata, H., Hachigo, A., and Fujimori, N., Diamond Rel. Mater. 2 (1993) p. 1197.CrossRefGoogle Scholar
10.Shikata, S., Nakahata, H., Higaki, K., Hachigo, A., Fujimori, N., Yamamoto, Y., Sakairi, N., and Takahashi, Y., in Proc. IEEE Ultrasonics Conf., vol. 277 (Institute of Electrical and Electronics Engineers, 1993).Google Scholar
11.Nakahata, H., Higaki, K., Fujii, S., Hachigo, A., Shikata, S., and Fujimori, N., IEEE Trans. Ultrason. Ferroelec. Frcq. Contr. 42 (1995) p. 362.CrossRefGoogle Scholar
12.Fujii, S., Seki, Y., Yoshida, K., Nakahata, H., Higaki, K., Kitabayashi, H., and Shikata, S., in IEEE Ultrasonics Symp. (Toronto, 1997) p. 183.Google Scholar
13.Nakahata, H., Kitabayashi, H., Fujii, S., Higaki, K., Tanabe, K., Seki, Y., and Shikata, S., IEEE Ultrasonics Symp. (San Antonio, 1996) p. 285.Google Scholar
14.Higaki, K., Nakahata, H., Kitabayashi, H., Fujii, S., Tanabe, K., Seki, Y., and Shikata, S., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 44 (1997) p. 1395.CrossRefGoogle Scholar
15.Koizumi, S., Ozeki, H., Kamo, M., Sato, Y., and Inuzuka, T., Appl. Phys. Lett. 71 (1997) p. 1064.CrossRefGoogle Scholar
16.Shiomi, H., Nishibayashi, Y., Toda, N., and Shikata, S., IEEE Electron Device Lett. 16 (1995) p. 36.CrossRefGoogle Scholar
17.Hokazono, A. and Kawarada, H., Jpn. J. Appl. Phys. A36 (1997) p. 7133.CrossRefGoogle Scholar
18.Kawarada, H., Itoh, M., and Hokazono, A., Jpn. J. Appl. Phys. 35 (1996) p. L1165.CrossRefGoogle Scholar
19.Deguchi, M., Hase, N., Kitabatake, M., Kotera, H., Shima, S., and Sakakima, H., in 5th Int. Conf. on New Diamond Technolology and Science, vol. 16 (Elsevier Science, 1997) p. 2.Google Scholar
20.Goodson, K.E. and Touzelbaev, M., in 8th European Conf. on Diamond, Diamond-Like Carbon and Related Materials, paper No. 13.1 (MYU.KK, Tokyo.)Google Scholar
21.Himpsel, F.J., Knapp, J.A., van Vechten, J.A., and Eastman, D.E., Phys. Rev. B 20 (1979) p. 624.CrossRefGoogle Scholar
22.Geis, M.W., Gregory, J.A., and Pate, B.B., IEEE Trans. Electron Dev. 38 (1991) p. 619.CrossRefGoogle Scholar
23.Okano, K., Koizumi, S., Silva, S.R.P., and Amaratunga, G.A.J., Nature 381 (1996) p. 140.CrossRefGoogle Scholar
24.Ravet, M.F., Gicquel, A., Anger, E., Wang, Z.Z., Chen, Y., and Rousseaux, F., in 2nd Int. Conf. on Appl. Diamond Films and Related Materials, Omiya, vol. 77 (1993).Google Scholar
25.Nishiyama, A., Yamashita, H., Yoshikawa, H., Yabe, H., Kitamura, K., and Marumoto, K., in 5th Int. Conf. on New Diamond Technology and Science, vol. 11 (Elsevier Science, 1997) p. 133.Google Scholar