Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T15:49:44.164Z Has data issue: false hasContentIssue false

Templating Approaches Using Natural Cellular Plant Tissue

Published online by Cambridge University Press:  31 January 2011

Peter Greil
Affiliation:
Department of Materials Science at the University of Erlangen, Germany; tel. +49 9131 85-27541; and e-mail peter.greil@ww.unierlangen.de.
Get access

Abstract

Biological preforms such as plant tissue offer a novel approach for manufacturing biomorphous ceramics with an anisotropic cellular micro- and macrostructure pseudomorphous to the natural template structure. Mimicking the hierarchical microstructure of the native template at different length scales from large vessels (mm) down to a cell wall microstructure (μm to nm) offers the possibility to tailor the local strut microstructure in biomorphous ceramics in order to improve mechanical properties at low density. Mineralization may be achieved by intercalation of the cell walls with an inorganic, metal organic, or organometallic sol. Heating above the pyrolysis temperature of the hydrocarbons forming the cell wall material in an inert atmosphere finally results in a positive replica of the cellular structure with a metal oxide/carbon composite forming the cell walls. Amorphous, nano- or microcrystalline C/Si-O-C(-N) composite materials are obtained by infiltration with a low viscosity preceramic polymeric precursor, such as polycarbosilane, -silazane, -siloxane, or a copolymer or mixture thereof. Pyrolysis into a biocarbon template and subsequent metal alloy melt or vapor infiltration and reaction at high temperatures above 1000°C is an alternate way to produce single and multiphase carbides and composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mann, S., Biomineralization, Principles and Concepts in Bioorganic Materials Chemistry (Oxford University Press, Oxford, 2001).CrossRefGoogle Scholar
2.Greil, P., J. Eur. Ceram. Soc. 21, 105 (2001).CrossRefGoogle Scholar
3.Ota, T., Imeda, M., Takase, H., Kobayashi, M., Kinoshita, N., Hirashita, T., Miyazaki, H., Hikichi, Y., J. Am. Ceram. Soc. 83, 1521 (2000).CrossRefGoogle Scholar
4.Shin, Y.S., Liu, J., Chang, J.H., Nie, Z.M., Exarhos, G., Adv. Mat. 13, 728 (2001).3.0.CO;2-J>CrossRefGoogle Scholar
5.Rambo, C.R., Andrade, T., Fey, T., Sieber, H., Martinelli, A.E., Greil, P., J. Am. Ceram. Soc. 91, 852 (2008).CrossRefGoogle Scholar
6.Deshpande, A.S., Burgert, I., Paris, O., Small 2, 994 (2006).CrossRefGoogle Scholar
7.Liu, Z.T., Fan, T.X., Ding, J., Zhang, D., Guo, Q.X., Ogawa, H., Ceram. Int. 34, 69 (2008).CrossRefGoogle Scholar
8.Greil, P., Lifka, T., Kaindl, A., J. Eur. Ceram. Soc. 18, 1961 (1998).CrossRefGoogle Scholar
9.Ota, T., Takahashi, M., Hibi, T., Ozawa, M., Suzuki, S., Hikichi, Y., Suzuki, H., J. Am. Ceram. Soc. 78, 3409 (1995).CrossRefGoogle Scholar
10.Sun, B., Fan, T., Zhang, D., Okabe, T., Carbon 42, 177 (2004).CrossRefGoogle Scholar
11.Gibson, L.J., Met. Mater. 8, 333 (1992).Google Scholar
12.Greil, P., Vogli, E., Fey, T., Betzold, A., Popovska, N., Gebhard, H., Sieber, H., J. Europ. Ceram. Soc. 22, 2697 (2002).CrossRefGoogle Scholar
13.Shebani, A.N., van Reenen, A.J., Meincken, M., Thermochim. Acta 471, 43 (2008).CrossRefGoogle Scholar
14.Zollfrank, C., Kladny, R., Sieber, H., Greil, P., J. Europ. Ceram. Soc. 24, 479 (2004).CrossRefGoogle Scholar
15.Brinker, C.J., Scherer, G.W., Sol-Gel Science (Academic Press, London, 1990).Google Scholar
16.Byrne, C.E., Nagle, D.C., Carbon 35, 259 (1997).CrossRefGoogle Scholar
17.Paris, O., Zollfrank, C., Zickler, G.A., Carbon 43, 53 (2005).CrossRefGoogle Scholar
18.Yang, J., Ilgebusi, O.J., Composites Part A 31, 617 (2000).CrossRefGoogle Scholar
19.Gern, H., Liquid Silicon Infiltration of Carbon/Carbon-Composites, PhD thesis, University of Stuttgart (1995).Google Scholar
20.Gern, F.H., Kochendörfer, R., Composites Part A 28, 355 (1997).CrossRefGoogle Scholar
21.Fitzer, E., Gadow, R., J. Am. Ceram. Soc. 65, 326 (1986).Google Scholar
22.Varela-Feria, F.M., Martinez-Fernandez, J., de Arellano Lopez, A.R., Singh, M., J. Eur. Ceram. Soc. 22, 2719 (2002).CrossRefGoogle Scholar
23.Rice, R.W., Grace, W.R., J. Mat. Sci. 31, 102 (1996).CrossRefGoogle Scholar
24.Gibson, L.J., Ashby, M.F., Cellular Solids: Structure and Properties (Pergamon Press, Oxford, 1997).CrossRefGoogle Scholar
25.Fey, T., Sieber, H., Greil, P., J. Eur. Ceram. Soc. 25, 1015 (2005).CrossRefGoogle Scholar
26.Hoppe, R.H.W., Petrova, S.I., Math. Comput. Simul. 74, 68 (2007).CrossRefGoogle Scholar
27.de Arellano-Lopez, A.R., Martinez-Fernandez, J., Gonzalez, P., Dominguez, C., Ferandez-Querro, V., Singh, M., Int. J. Appl. Ceram. Technol. 1, 56 (2004).CrossRefGoogle Scholar
28.Zampieri, A., Colombo, P., Mabande, G.T.P., Selvam, T., Schwieger, W., Scheffler, F., Adv. Mater. 17, 344 (2005).CrossRefGoogle Scholar
29.Kostova, M.H., Zollfrank, C., Batentschuk, M., Goetz-Neunhoeffer, F., Winnacker, A., Greil, P., Adv. Funct. Mat. 19, 599 (2009).CrossRefGoogle Scholar
30.Gonzales, P., Serra, J., Liste, S., Chiussi, S., Leon, B., Perez-Amor, M., Martinez-Fernandez, J., de Arellano-Lopez, A.R., Varela-Feria, F.M., Biomaterials 24, 4827 (2003).CrossRefGoogle Scholar
31.Jonasova, L., Müller, F.A., Sieber, H., Greil, P., Key Eng. Mater. 254–256, 1013 (2004).Google Scholar
32.Haas, D., Fey, T., Greil, P., Adv. Eng. Mater. 9, 892 (2007).CrossRefGoogle Scholar
33.Heidenreich, B., Krenkel, W., Lexow, B., in “Proc. 27th Int. Cocoa Beach Conf. on Adv. Ceram. Comp: A,” Kriven, W.M., Lin, H.-T., Eds. (The American Ceramic Society, Westerville, OH, 2003), pp. 375381.Google Scholar