Skip to main content

The energy-storage frontier: Lithium-ion batteries and beyond

  • George Crabtree (a1), Elizabeth Kócs (a2) and Lynn Trahey (a3)

Materials play a critical enabling role in many energy technologies, but their development and commercialization often follow an unpredictable and circuitous path. In this article, we illustrate this concept with the history of lithium-ion (Li-ion) batteries, which have enabled unprecedented personalization of our lifestyles through portable information and communication technology. These remarkable batteries enable the widespread use of laptop and tablet computers, access to entertainment on portable devices such as hand-held music players and video game consoles, and enhanced communication and networking on personal devices such as cellular telephones and watches. A similar transformation of transportation to electric cars and of the electricity grid to widespread deployment of variable renewable solar and wind generation, effortless time-shifting of energy generation and demand, and a transition from central to distributed energy services requires next-generation energy storage that delivers much higher performance at lower cost. The path to these next-generation batteries is likely to be as circuitous and unpredictable as the path to today’s Li-ion batteries. We analyze the performance and cost improvements needed to transform transportation and the electricity grid, and we evaluate the outlook for meeting these needs with next-generation beyond Li-ion batteries.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The energy-storage frontier: Lithium-ion batteries and beyond
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The energy-storage frontier: Lithium-ion batteries and beyond
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The energy-storage frontier: Lithium-ion batteries and beyond
      Available formats
Hide All
1. Goodenough, J.B., Park, K.-S., J. Am. Chem. Soc. 135, 1167 (2013).
2. Levine, S., “Battery Powered: The Promise of Energy Storage,” Foreign Affairs (March/April 2015), (accessed May 6, 2015).
3. Levine, S., “The Man Who Brought Us the Lithium-Ion Battery at the Age of 57 Has an Idea for a New One at 92,” Quartz (February 5, 2015), (accessed May 6, 2015).
4. Thackeray, M.M., Wolverton, C., Isaacs, E.D., Energy Environ. Sci. 5, 7854 (2012).
5. Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., Energy Environ. Sci. 4, 3243 (2011).
6. Loeffler, N., Bresser, D., Passerini, S., Platin. Met. Rev. 59, 34 (2015).
7. Lerf, A., Dalton Trans. 43, 10276 (2014).
8. Whittingham, M.S., Proc. IEEE 104, 1518 (2012).
9. Yoshino, A., Angew. Chem. Int. Ed. 51, 5798 (2012).
10. Hughes, M., Hampson, N.A., Karunathilaka, S.A.G.R., J. Power Sources 12, 83 (1984).
11. Broussely, M., Biensan, P., Simon, B., Electrochim. Acta 45, 3 (1999).
12. Winter, M., Besenhard, J.O., Spahr, M.E., Novak, P., Adv. Mater. 10, 725 (1998).
13. Whittingham, M.S., Chem. Rev. 104, 4271 (2004).
14. Whittingham, M.S., Science 192, 1126 (1976).
15. Whittingham, M.S., Mater. Res. Bull. 9, 1681 (1974).
16. Whittingham, M.S., J. Chem. Soc. Chem. Commun. 9, 328 (1974).
17. Gamble, F.R., Osiecki, J.H., Cais, M., Pisharody, R., DiSalvo, F.J., Geballe, T.H., Science 174, 493 (1971).
18. Dresselhaus, M.S., Dresselhaus, G., Adv. Phys. 51, 1 (2002).
19. Nishi, Y., J. Power Sources 100, 101 (2001).
20. Nishi, Y., Chem. Rec. 1, 406 (2001).
21. Pereira, N., Amatucci, G.G., Whittingham, M.S., Hamlen, R., J. Power Sources 280, 18 (2015).
22. Abraham, K.M., Holleck, G.L., Nguyen, T., Paquariello, D.M., Schwartz, D.A., J. Power Sources 26, 313 (1989).
23. Fouchard, D., Taylor, J.B., J. Power Sources 21, 195 (1987).
24. Besenhard, J.O.. Eichenger, G., J. Electroanal. Chem. 68, 1 (1976).
25. Li, Z., Huang, J., Liaw, B.Y., Metzler, V., Zhang, J., J. Power Sources 254, 16 (2014).
26. Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhangad, Y., Zhang, J.-G., Energy Environ. Sci. 7, 513 (2014).
27. Brandt, K., Laman, F.C., J. Power Sources 25, 265 (1989).
28. Robillard, C., “Lithium-Metal-Polymer Batteries,” Proc. IEEE Power Eng. Soc. Gen. Meet. 2 (San Francisco, CA, June 12–16, 2005), pp. 12231227.
29. Mengeritsky, E., Dan, P., Weissman, I., Zaban, A., Aurbach, D., J. Electrochem. Soc. 143, 2110 (1996).
30. Dan, P., Mengeritsky, E., Geronov, Y., Aurbach, D., Weisman, I., J. Power Sources 54, 143 (1995).
31. Aurbach, D., Zinigrad, E., Teller, H., Dan, P., J. Electrochem. Soc. 147, 1274 (2000).
32. Zhang, Y., Qian, J., Xu, W., Russell, S.M., Chen, X., Nasybulin, E., Bhattacharya, P., Engelhard, M.H., Mei, D., Cao, R., Ding, F., Cresce, A.V., Xu, K., Zhang, J.-G., Nano Lett. 14, 688 (2014).
33. Cheng, X.-B., Zhang, Q., J. Mater. Chem. A 3, 7207 (2015).
34. Qian, J., Henderson, W.A., Xu, W., Bhattachary, P., Engelhard, M., Borodin, O., Zhang, J.-G., Nat. Commun. 6, 6362 (2015).
35. Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B., Mater. Res. Bull. 15, 783 (1980).
36. Aurbach, D., Talyosef, Y., Markovsky, B., Markevich, E., Zinigrad, E., Asraf, L., Gnanaraj, J.S., Kim, H.-J., Electrochim. Acta 50, 247 (2004).
37. Lazzari, M., Scrosati, B., J. Electrochem. Soc. 127, 773 (1980).
38. Flandrois, S., Simon, B., Carbon 37, 165 (1999).
39. Vetter, J., Novak, P., Wagner, M.R., Veitb, C., Moller, K.-C., Besenhard, J.O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., Hammouched, A., J. Power Sources 147, 269 (2005).
40. Ozawa, K., Solid State Ionics 69, 212 (1994).
41. Agubra, V.A., Fergus, J.W., J. Power Sources 268, 153 (2014).
42. Verma, P., Maire, P., Novák, P., Electrochim. Acta 55, 6332 (2010).
43. Johnson, B.A., White, R.E., J. Power Sources 70, 48 (1998).
44. Besenhard, J.O., Carbon 14, 111 (1976).
45. Basu, S. (Bell Telephone Laboratories), “Rechargeable Battery,” US Patent 4,304,825 (1981).
46. Yazami, R., Touzain, P.H., J. Power Sources 9, 365 (1983).
47. Yoshino, A., Sanechika, K., Nakajima, T., “Secondary Battery,” US Patent 4,668,595 (1985); Japanese Patent 1989293 (1985).
48. Ellis, B.L., Lee, K.T., Nazar, L.F., Chem. Mater. 22, 691 (2010).
49. Tran, H.Y., Täubert, C., Wohlfahrt-Mehrens, M., Prog. Solid State Chem. 42, 118 (2014).
50. Thackeray, M.M., David, W.I.F., Bruce, P.G., Goodenough, J.B., Mater. Res. Bull. 18, 461 (1983).
51. Thackeray, M.M., Prog. Solid State Chem. 25, 1 (1997).
52. Van der Ven, A., Marianetti, C., Morgan, D., Ceder, G., Solid State Ionics 135, 21 (2000).
53. Bruce, P.G., Chem Commun. 19, 1817 (1997).
54. Fergus, J.W., J. Power Sources 195, 939 (2010).
55. Zaghib, K., Mauger, A., Groult, H., Goodenough, J.B., Julien, C.M., Materials 6, 1028 (2013).
56. Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., J. Electrochem. Soc. 144, 1188 (1997).
57. Yuan, L.-X., Wang, Z.-H., Zhang, W.-X., Hu, X.-L., Chen, J.-T., Huang, Y.-H., Goodenough, J.B., Energy Environ. Sci. 4, 269 (2011).
58. Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M., Armand, M., J. Power Sources 97, 503 (2001).
59. Croy, J.R., Gallagher, K.G., Balasubramanian, M., Long, B.R., Thackeray, M.M., J. Electrochem. Soc. 161, A318 (2014).
60. Yan, J., Liu, X., Li, B., RSC Adv. 4, 63268 (2014).
61. Zu, C.X., Li, H., Energy Environ. Sci. 4, 2614 (2011).
62. Crabtree, G., AIP Conf. Proc. 1652, 112 (2015).
63. Citi GPS: Investment Themes in 2015 (2015), (accessed May 6, 2015).
64. Nykvist, B., Nilsson, M., Nat. Clim. Change 5, 329 (2015).
65. Megahed, S., Scrosati, B., J. Power Sources 51, 79 (1994).
66. Kinoshita, A., “Development of Sanyo Li/Ion Batteries,” Proceedings of the 26th International Battery Seminar and Exhibit 2009 (Curran Associates, Red Hook, NY, 2009), vol. 1, pp. 285–316, (accessed August 22, 2015).
67. Panasonic NCR18650B Lithium-Ion Battery, (accessed August 17, 2015).
68. Dahn, J.R., Sleigh, A.K., Shi, H., Way, B.M., Weydanz, W.J., Reimers, J.N., Zhong, Q., von Sacken, U., in Lithium Batteries: New Materials, Development and Perspectives, Pistoia, G., Ed. (Elsevier, Amsterdam, The Netherlands, 1994), chap. 1.
69. Liang, B., Liu, Y., Xu, Y., J. Power Sources 267, 469 (2014).
70. Szczech, J.R., Jin, S., Energy Environ. Sci. 4, 56 (2011).
71. Park, C.-M., Kim, J.-H., Kim, H., Sohn, H.-J., Chem. Soc. Rev. 39, 3115 (2010).
72. Brushett, F.R., Trahey, L., Xiao, X., Vaughey, J.T., ACS Appl. Mater. Interfaces 6, 4524 (2014).
73. Su, X., Wu, Q.L., Li, J.C., Xiao, X.C., Lott, A., Lu, W.Q., Sheldon, B.W., Wu, J., Adv. Energy Mater. 4, 1 (2014).
74. Trahey, L., Kung, H.H., Thackeray, M.M., Vaughey, J.T., Eur. J. Inorg. Chem. 2011, 3984 (2011).
75. Zhang, S.S., J. Power Sources 162, 1379 (2006).
76. Bottcher, T., Duda, B., Kalinovich, N., Kazakova, O., Ponomarenko, M., Vlasov, K., Winter, M., Roschenthaler, G.V., Prog. Solid State Chem. 42, 202 (2014).
77. Tan, S., Ji, Y.J., Zhang, Z.R., Yang, Y., ChemPhysChem 15, 1956 (2014).
78. Urban, B., Shmakova, V., Lim, B., Roth, K., “Energy Consumption of Consumer Electronics in US Homes 2013” (Fraunhofer USA, Boston, 2014), (accessed May 8, 2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 600
Total number of PDF views: 1253 *
Loading metrics...

Abstract views

Total abstract views: 2122 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th May 2018. This data will be updated every 24 hours.