Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T12:06:25.340Z Has data issue: false hasContentIssue false

Two-Dimensional Electron Gases at Oxide Interfaces

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Two-dimensional electron gases (2DEGs) based on conventional semiconductors such as Si or GaAs have played a pivotal role in fundamental science and technology. The high mobilities achieved in 2DEGs enabled the discovery of the integer and fractional quantum Hall effects and are exploited in high-electron-mobility transistors. Recent work has shown that 2DEGs can also exist at oxide interfaces. These electron gases typically result from reconstruction of the complex electronic structure of the oxides, so that the electronic behavior of the interfaces can differ from the behavior of the bulk. Reports on magnetism and superconductivity in oxide 2DEGs illustrate their capability to encompass phenomena not shown by interfaces in conventional semiconductors. This article reviews the status and prospects of oxide 2DEGs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Orton, J.W., The Story of Semiconductors (Oxford University Press, Oxford, U.K., 2004).Google Scholar
2.Pfeiffer, L., West, K.W., Stormer, H.L., Baldwin, K.W., Appl. Phys. Lett. 55, 1888 (1989).CrossRefGoogle Scholar
3.von Klitzing, K., Rev. Mod. Phys. 58, 519 (1986).CrossRefGoogle Scholar
4.Stormer, H.L., Rev. Mod. Phys. 71, 875 (1999).CrossRefGoogle Scholar
5.Dingle, R., Störmer, H.L., Gossard, A.C., Wiegmann, W., Appl. Phys. Lett. 33, 665 (1978).CrossRefGoogle Scholar
6.Tokura, Y., Arima, T., Jpn. J. Appl. Phys. 29, 2388 (1990).CrossRefGoogle Scholar
7.Cava, R.J., Science 247, 656 (1990).CrossRefGoogle Scholar
8.Baraff, G.A., Appelbaum, J.A., Hamann, D.R., Phys. Rev. Lett. 38, 237 (1977).CrossRefGoogle Scholar
9.Harrison, W.A., Kraut, E.A., Waldrop, J.R., Grant, R.W., Phys. Rev. B 18, 4402 (1978).CrossRefGoogle Scholar
10.Hesper, R., Tjeng, L.H., Heeres, A., Sawatzky, G.A., Phys. Rev. B. 62, 16046 (2000).CrossRefGoogle Scholar
11.Nakagawa, N., Hwang, H.Y., Muller, D.A., Nat. Mater. 5, 204 (2006).CrossRefGoogle Scholar
12.Okamoto, S., Millis, A.J., Phys. Rev. B 70, 214531 (2004).Google Scholar
13.Mannhart, J., Hilgenkamp, H., Supercond. Sci. Technol. 10, 880 (1997).CrossRefGoogle Scholar
14.Hilgenkamp, H., Mannhart, J., Rev. Mod. Phys. 74, 485 (2002).CrossRefGoogle Scholar
15.Mannhart, J., in Thin Films and Heterostructures for Oxide Electronics, Ogale, S., Ed. (Springer, New York, 2005), pp. 251278.CrossRefGoogle Scholar
16.Hwang, H.Y., MRS Bull. 31, 28 (2006).CrossRefGoogle Scholar
17.Cen, C., Thiel, S., Hammerl, G., Schneider, C.W., Andersen, K.E., Hellberg, C.S., Mannhart, J., Levy, J., Nat. Mater. 7, 298 (2008).CrossRefGoogle Scholar
18.Hamann, D.R., Muller, D.A., Hwang, H.Y., Phys. Rev. B 73, 195403 (2006).CrossRefGoogle Scholar
19.Okamoto, S., Millis, A.J., Spaldin, N.A., Phys. Rev. Lett. 97, 056802 (2006).CrossRefGoogle Scholar
20.Okamoto, S., Millis, A.J., Phys. Rev. B70, 075101/1–12 (2004).CrossRefGoogle Scholar
21.Freericks, J.K., Transport in Multilayered Nanostructures: The Dynamical Mean-Field Theory Approach (Imperial College Press, London, 2006).CrossRefGoogle Scholar
22.Popovic, Z.S., Satpathy, S., Phys. Rev. Lett. 94, 176805 (2005).CrossRefGoogle Scholar
23.Pentcheva, R., Pickett, W.E., Phys. Rev. Lett. 99, 016802 (2007).CrossRefGoogle Scholar
24.Park, M.S., Rhim, S.H., Freeman, A.J., Phys. Rev. B 74, 205416 (2006).CrossRefGoogle Scholar
25.Gemming, S., Seifert, G., Acta Mater. 54, 4299 (2006).CrossRefGoogle Scholar
26.Schwingenschlögl, U., Schuster, C., Eur. Phys. Lett. 81, 17007 (2008).CrossRefGoogle Scholar
27.Tufte, O.N., Chapman, P.W., Phys. Rev. 155, 796 (1967).CrossRefGoogle Scholar
28.Thiel, S., Hammerl, G., Schmehl, A., Schneider, C.W., Mannhart, J., Science 313, 1942 (2006).CrossRefGoogle Scholar
29.Wolfe, C.M., Stillman, G.E., Lindley, W.T., J. Appl. Phys. 41, 3088 (1970).CrossRefGoogle Scholar
30.Takizawa, M., Wadati, H., Tanaka, K., Hashimoto, M., Yoshida, T., Fujimori, A., Chikamatsu, A., Kumigashira, H., Oshima, M., Shibuya, K., Mihara, T., Ohnishi, T., Lippmaa, M., Kawasaki, M., Koinuma, H., Okamoto, S., Millis, A.J., Phys. Rev. Lett. 97, 057601 (2006).CrossRefGoogle Scholar
31.Lin, C., Okamoto, S., Millis, A.J., Phys. Rev. B 73, 041104 (2006).CrossRefGoogle Scholar
32.Pentcheva, R., Pickett, W.E., Phys. Rev. B 74, 035112 (2006).CrossRefGoogle Scholar
33.Kawasaki, M., Takahashi, K., Maeda, T., Shinohara, R.T.M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., Koinuma, H., Science 266, 1540 (1994).CrossRefGoogle Scholar
34.Koster, G., Kropman, B.L., Rijnders, G.J.H.M., Blank, D.H.A., Rogalla, H., Appl. Phys. Lett. 73, 2920 (1998).CrossRefGoogle Scholar
35.Huijben, M., PhD thesis, University of Twente, Enschede, The Netherlands (2006).Google Scholar
36.Huijben, M., Brinkman, A., Koster, G., Rijnders, G., Hilgenkamp, H., Blank, D.H.A., Adv. Mater., in press (available at http://arxiv.org/abs/0809.1068).Google Scholar
37.Schrott, A.G., Misewich, J.A., Copel, M., Abraham, D.W., Zhang, Y., Appl. Phys. Lett. 79, 1786 (2001).CrossRefGoogle Scholar
38.Koster, G., Rijnders, G., Blank, D.H.A., Rogalla, H., Physica C 339, 215 (2000).CrossRefGoogle Scholar
39.Frey, T., Chi, C.C., Tsuei, C.C., Shaw, T., Bozso, F., Phys. Rev. B 49, 3483 (1994).CrossRefGoogle Scholar
40.Rijnders, G.J.H.M., Koster, G., Blank, D.H.A., Rogalla, H., Appl. Phys. Lett. 79, 1888 (1997).CrossRefGoogle Scholar
41.Ohtomo, A., Hwang, H.Y., Nature 427, 423 (2004).CrossRefGoogle Scholar
42.Kalabukhov, A.S., Gunnarsson, R., Börjesson, J., Olsson, E., Claeson, T., Winkler, D., Phys. Rev. B 75, 121404 (2007).CrossRefGoogle Scholar
43.Siemons, W., Koster, G., Yamamoto, H., Harrison, W.A., Lucovsky, G., Geballe, T.H., Blank, D.H.A., Beasley, M.R., Phys. Rev. Lett. 98, 196802 (2007).CrossRefGoogle Scholar
44.Herranz, G., Basletic, M., Bibes, M., Carrétéro, C., Tafra, E., Jacquet, E., Bouzehouane, K., Deranlot, C., Hamzic, A., Broto, J.-M., Barthélémy, A., Fert, A., Phys. Rev. Lett. 98, 216803 (2007).CrossRefGoogle Scholar
45.Huijben, M., Rijnders, G., Blank, D.H.A., Bals, S., Van Aert, S., Verbeeck, J., Van Tendeloo, G., Brinkman, A., Hilgenkamp, H., Nat. Mater. 5, 556 (2006).CrossRefGoogle Scholar
46.Hotta, Y., Susaki, T., Hwang, H.Y., Phys. Rev. Lett. 99, 236805 (2007).CrossRefGoogle Scholar
47.Schneider, C.W., Thiel, S., Hammerl, G., Richter, C., Mannhart, J., Appl. Phys. Lett. 89, 122101 (2006).CrossRefGoogle Scholar
48.Jia, C.L., Lentzen, M., Urban, K., Science 299, 870 (2003).CrossRefGoogle Scholar
49.Muller, D.A., Nakagawa, N., Ohtomo, A., Grazul, J.L., Hwang, H.Y., Nature 430, 657 (2004).CrossRefGoogle Scholar
50.Frederikse, H.P.R., Thurber, W.R., Hosler, W.R., Phys. Rev. 134, A442 (1964).CrossRefGoogle Scholar
51.Brinkmann, A., Huijben, M., van Zalk, M., Huijben, J., Zeitler, U., Maan, J.C., van der Wiel, W.G., Rijnders, G., Blank, D.H.A., Hilgenkamp, H., Nat. Mater. 6, 493 (2007).CrossRefGoogle Scholar
52.Reyren, N., Thiel, S., Caviglia, A., Fitting-Kourkoutis, L., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Rüetschi, A.-S., Jaccard, D., Gabay, M., Muller, D.A., Triscone, J.-M., Mannhart, J., Science 317, 1196 (2007).CrossRefGoogle Scholar
53.Mannhart, J., Bednorz, J.G., Müller, K.A., Schlom, D.G., Z. Phys. B 83, 307 (1991).CrossRefGoogle Scholar
54.Ahn, C.H., Triscone, J.-M., Mannhart, J., Nature 424, 1015 (2003).CrossRefGoogle Scholar
55.Ahn, C.H., Bhattacharya, A., Di Ventra, M., Eckstein, J.N., Frisbie, C.D., Gershenson, M.E., Goldman, A.M., Inoue, I.H., Mannhart, J., Millis, A., Morpurgo, A., Natelson, D., Triscone, J.-M., Rev. Mod. Phys., 78, 1185 (2006).CrossRefGoogle Scholar
56.Caviglia, A., Reyren, N., Gariglio, S., Jaccard, D., Giamarchi, T., Triscone, J.-M., Schneider, T., Benfatto, L., Thiel, S., Hammerl, G., Mannhart, J., “Electric Field Control of the LaAlO3/SrTiO3 Interface Ground State, manuscript submitted.Google Scholar
57.Ohtomo, A., Muller, D.A., Grazul, J.L., Hwang, H.Y., Nature 419, 378 (2002).CrossRefGoogle Scholar
58.Okamoto, S., Millis, A.J., Nature 428, 630 (2004).CrossRefGoogle Scholar
59.Salvador, P.A., Haghiri-Gosnet, A.-M., Mercey, B., Hervieu, M., Raveau, B., Appl. Phys. Lett. 75, 2638 (1999).CrossRefGoogle Scholar
60.Smadici, S., Abbamonte, P., Bhattacharya, A., Zhai, X., Jiang, B., Rusydi, A., Eckstein, J.N., Bader, S.D., Zuo, J.-M., Phys. Rev. Lett. 99, 196404 (2007).CrossRefGoogle Scholar
61.Tsukazaki, A., Ohtomo, A., Kita, T., Ohno, Y., Ohno, H., Kawasaki, M., Science 315, 1388 (2007).CrossRefGoogle Scholar
62.Koerting, V., Yuan, Q., Hirschfeld, P.J., Kopp, T., Mannhart, J., Phys. Rev. B 71, 104510 (2005).CrossRefGoogle Scholar
63.Chaloupka, J., Khaliullin, G., Phys. Rev. Lett. 100, 016404 (2008).CrossRefGoogle Scholar