Skip to main content Accessibility help

Using plasmonically generated carriers as redox equivalents

  • Sungju Yu (a1), Varun Mohan (a2) and Prashant K. Jain (a3)


Nanostructures of plasmonic metals naturally combine strong light–matter interactions with catalytic activity, enabling new opportunities for light harvesting, catalytic chemistry, and artificial photosynthesis. Numerous studies have demonstrated that the optical excitation of localized surface plasmons generates hot electrons that can activate adsorbates triggering or facilitating chemical reactions on the surface of the nanoparticle. Going beyond such hot-electron-activated chemistry, a body of studies has shown that electron and hole carriers can be harvested from a plasmonically excited nanoparticle and utilized as redox equivalents for driving chemical reactions involving charge transfer. This article reviews such photoredox chemistry driven by plasmonic excitation of metal nanoparticles. Under certain conditions, a plasmonically excited nanoparticle can catalyze multielectron, multiproton transformations such as the photosynthesis of CO2 to hydrocarbons. We describe how the free energy of plasmonically generated charge carriers can be harvested and utilized for thermodynamically uphill reactions involving the formation of energy-rich chemical bonds or the development of molecular complexity. We end with a discussion of future opportunities in plasmon-excitation-driven photoredox chemistry.



Hide All
1.Nitzan, A., Brus, L.E., J. Chem. Phys. 75, 2205 (1981).10.1063/1.442333
2.Nitzan, A., Brus, L.E., J. Chem. Phys. 74, 5321 (1981).10.1063/1.441699
3.Christopher, P., Xin, H., Linic, S., Nat. Chem. 3, 467 (2011).10.1038/nchem.1032
4.Christopher, P., Xin, H., Marimuthu, A., Linic, S., Nat. Mater. 11, 1044 (2012).10.1038/nmat3454
5.Mukherjee, S., Libisch, F., Large, N., Neumann, O., Brown, L.V., Cheng, J., Lassiter, B., Carter, E.A., Nordlander, P., Halas, N.J., Lassiter, J.B., Carter, E.A., Nordlander, P., Halas, N.J., Nano Lett . 13, 240 (2013).10.1021/nl303940z
6.Mukherjee, S., Zhou, L., Goodman, A.M., Large, N., Ayala-Orozco, C., Zhang, Y., Nordlander, P., Halas, N.J., J. Am. Chem. Soc. 136, 64 (2014).10.1021/ja411017b
7.Marimuthu, A., Zhang, J., Linic, S., Science 339, 1590 (2013).
8.Huang, Y.F., Zhu, H.P., Liu, G.K., Wu, D.Y., Ren, B., Tian, Z.Q., J. Am. Chem. Soc. 132, 9244 (2010).10.1021/ja101107z
9.Zhang, Z., Kinzel, D., Deckert, V., J. Phys. Chem. C 120, 20978 (2016).
10.Jain, P.K., J. Phys. Chem. C 123, 24347 (2019).
11.Hou, W., Hung, W.H., Pavaskar, P., Goeppert, A., Aykol, M., Cronin, S.B., ACS Catal . 1, 929 (2011).10.1021/cs2001434
12.Link, S., El-Sayed, M.A., J. Phys. Chem. B 103, 8410 (1999).
13.Hodak, J.H., Martini, I., Hartland, G.V., J. Phys. Chem. B 102, 6958 (1998).
14.Jain, P.K., Qian, W., El-Sayed, M.A., J. Am. Chem. Soc. 128, 2426 (2006).
15.Jain, P.K., Qian, W., El-Sayed, M.A., J. Phys. Chem. B 110, 136 (2006).10.1021/jp055562p
16.Hartland, G.V., Besteiro, L.V., Johns, P., Govorov, A.O., ACS Energy Lett . 2, 1641 (2017).
17.Hodak, J.H., Henglein, A., Hartland, G.V., J. Phys. Chem. B 104, 9954 (2000).
18.Persson, B.N.J., Surf. Sci. 281, 153 (1993).
19.Boerigter, C., Campana, R., Morabito, M., Linic, S., Nat. Commun. 7, 10545 (2016).
20.Foerster, B., Spata, V.A., Carter, E.A., Sönnichsen, C., Link, S., Sci. Adv. 5, 1 (2019).10.1126/sciadv.aav0704
21.Seemala, B., Therrien, A.J., Lou, M., Li, K., Finzel, J.P., Qi, J., Nordlander, P., Christopher, P., ACS Energy Lett . 4, 1803 (2019).
22.Kim, Y., Dumett Torres, D., Jain, P.K., Nano Lett . 16, 3399 (2016).
23.Jin, R., Cao, Y., Mirkin, C.A., Kelly, K.L., Schatz, G.C., Zheng, J.G., Science 294, 1901 (2001).
24.Maillard, M., Huang, P., Brus, L., Nano Lett . 3, 1611 (2003).
25.Wu, X., Redmond, P.L., Liu, H., Chen, Y., Steigerwald, M., Brus, L., J. Am. Chem. Soc. 130, 9500 (2008).
26.Redmond, P.L., Wu, X., Brus, L., J. Phys. Chem. C 111, 8942 (2007).10.1021/jp0710436
27.Redmond, P.L., Brus, L.E., J. Phys. Chem. C 111, 14849 (2007).10.1021/jp0741859
28.Thrall, E.S., Steinberg, A.P., Wu, X., Brus, L.E., J. Phys. Chem. C 117, 26238 (2013).
29.Kim, Y., Wilson, A.J., Jain, P.K., ACS Catal . 7, 4360 (2017).10.1021/acscatal.7b01318
30.Zhai, Y., DuChene, J.S., Wang, Y.C., Qiu, J., Johnston-Peck, A.C., You, B., Guo, W., Diciaccio, B., Qian, K., Zhao, E.W., Ooi, F., Hu, D., Su, D., Stach, E.A., Zhu, Z., Wei, W.D., Nat. Mater. 15, 889 (2016).
31.Brus, L., Nat. Mater. 15, 824 (2016).10.1038/nmat4698
32.Ngoc, L.L.T., Wiedemair, J., van den Berg, A., Carlen, E.T., Opt. Express 23, 5547 (2015).
33.Kim, Y., Smith, J.G., Jain, P.K., Nat. Chem. 10, 763 (2018).
34.Sheldon, M.T., Van De Groep, J., Brown, A.M., Polman, A., Atwater, H.A., Science 346, 828 (2014).
35.Kang, X., Jin, Y., Cheng, G., Dong, S., Langmuir 18, 1713 (2002).10.1021/la0155303
36.Chu, S., Majumdar, A., Nature 488, 294 (2012).
37.Olah, G.A., Prakash, G.K.S., Goeppert, A., J. Am. Chem. Soc. 133, 12881 (2011).
38.Yu, S., Wilson, A.J., Kumari, G., Zhang, X., Jain, P.K., ACS Energy Lett . 2, 2058 (2017).10.1021/acsenergylett.7b00640
39.Wuttig, A., Yoon, Y., Ryu, J., Surendranath, Y., J. Am. Chem. Soc. 139, 17109 (2017).
40.Manthiram, K., Surendranath, Y., Alivisatos, A.P., J. Am. Chem. Soc. 136, 7237 (2014).10.1021/ja502628r
41.Chen, Y., Li, C.W., Kanan, M.W., J. Am. Chem. Soc. 134, 19969 (2012).
42.Yu, S., Wilson, A.J., Heo, J., Jain, P.K., Nano Lett . 18, 2189 (2018).
43.Neaţu, Ş., Maciá-Agulló, J.A., Concepción, P., Garcia, H., J. Am. Chem. Soc. 136, 15969 (2014).
44.Kumar, D., Lee, A., Lee, T., Lim, M., Lim, D.K., Nano Lett . 16, 1760 (2016).10.1021/acs.nanolett.5b04764
45.Zhang, X., Li, X., Zhang, D., Su, N.Q., Yang, W., Everitt, H.O., Liu, J., Nat. Commun. 8, 14542 (2017).
46.Kumari, G., Zhang, X., Devasia, D., Heo, J., Jain, P.K., ACS Nano 12, 8330 (2018).
47.Yu, S., Jain, P.K., Nat. Commun. 10, 2022 (2019).
48.Yu, S., Jain, P.K., ACS Energy Lett . 4, 2295 (2019).
49.Tu, W., Zhou, Y., Li, H., Li, P., Zou, Z., Nanoscale 7, 14232 (2015).
50.Wilson, A.J., Jain, P.K., J. Am. Chem. Soc. 140, 5853 (2018).
51.Lee, J., Mubeen, S., Ji, X., Stucky, G.D., Moskovits, M., Nano Lett . 12, 5014 (2012).
52.Mubeen, S., Lee, J., Singh, N., Krämer, S., Stucky, G.D., Moskovits, M., Nat. Nanotechnol. 8, 247 (2013).
53.Zhang, X., Kumari, G., Heo, J., Jain, P.K., Nat. Commun. 9, 3056 (2018).
54.Prier, C.K., Rankic, D.A., MacMillan, D.W.C., Chem. Rev. 113, 5322 (2013).
55.Ota, E., Wang, H., Frye, N.L., Knowles, R.R., J. Am. Chem. Soc. 141, 1457 (2019).
56.Yoon, T.P., Ischay, M.A., Du, J., Nat. Chem. 2, 527 (2010).
57.Peters, B.K., Rodriguez, K.X., Reisberg, S.H., Beil, S.B., Hickey, D.P., Kawamata, Y., Collins, M., Starr, J., Chen, L., Udyavara, S., Klunder, K., Gorey, T.J., Anderson, S.L., Neurock, M., Minteer, S.D., Baran, P.S., Science 363, 838 (2019).

Using plasmonically generated carriers as redox equivalents

  • Sungju Yu (a1), Varun Mohan (a2) and Prashant K. Jain (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed