Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-16T22:35:59.546Z Has data issue: false hasContentIssue false

1.54 μm Photoluminescence and Electroluminescence in Erbium Implanted 6H SiC

Published online by Cambridge University Press:  10 February 2011

M. Yoganathan
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, CHOYKE @POP.PITT.-EDU
W. J. Choyke
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, CHOYKE @POP.PITT.-EDU
R. P. Devaty
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, CHOYKE @POP.PITT.-EDU
G. Pensl
Affiliation:
Lehrstuhl Angewandte Physik, Universität Erlangen-Nürnberg, Staudtstrasse 7, D-91058, Erlangen, Germany
J. A. Edmond
Affiliation:
Cree Research, Inc., 2810 Meridian Parkway, Durham, North Carolina 27713
Get access

Abstract

Photoluminescence in the neighborhood of 1.54μm due to the 4I13/24l15/2 transitions is observed from 2 K up to 520 K in erbium implanted 6H SiC. The integrated 1.54 μm photoluminescence (PL) intensity is almost constant from 2 K up to about 400 K, with slight sample to sample variation. The shallow nitrogen donors play an important role in the excitation of the Er3+ centers. 1.54 μm electroluminescence (EL) is observed in erbium implanted 6H SiC p-n junctions under forward bias conditions. The EL spectrum is identical to the PL spectrum.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rare Earth Doped Semiconductors, edited by Pomrenke, G. S., Klein, P. B. and Langer, D. W. (Mater. Res. Soc. Symp. Proc. 301, Pittsburgh, PA, 1993).Google Scholar
2. Favennec, P. N., L'Haridon, H., Moutonnet, D., Salvi, M., and Gauneau, M., (Mater. Res. Soc. Symp. Proc. 301, Pittsburgh, PA, 1993).Google Scholar
3. Wang, X. Z. and Wessels, B. W., Appl. Phys. Lett., 67, 518 (1995).Google Scholar
4. Wilson, R. G., Schwartz, R. N., Abernathy, C.R., Pearton, S.J., Newman, N., Rubin, M., Fu, T., and Zavada, J.M., Appl. Phys. Lett. 65, 992 (1994).Google Scholar
5. Qiu, C. H., Leksono, M. W., Pankove, J. I., Trovik, J. T., Feuerstein, R. J., and Namavar, F., Appl. Phys. Lett. 66, 562 (1995).Google Scholar
6. Choyke, W. J., Devaty, R. P., Clemen, L. L., Yoganathan, M., Pensl, G., and Hässler, Ch., Appl. Phys. Left. 65, 1668 (1994).Google Scholar
7. Choyke, W. J., Devaty, R. P., Clemen, L. L., MacMillan, M. F., Yoganathan, M., and Pensl, G., to be published in the proceedings of the International Conference on Silicon Carbide and Related Materials '95, Kyoto, Japan, Sept. 1995.Google Scholar
8. Alshawa, A. K., Lozykowski, H. J., Li, T., and Brown, I., Mat. Res. Soc. Symp. Proc. Vol. 301,281 (1993).Google Scholar
9. Galtier, P., Benyattou, T., Pocholle, J. P., Charasse, M. N., Guillot, G., and Hirtz, J. P., Inst. Phys. Conf. Ser. No 106: Chapter 5, 327 (1989).Google Scholar