Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 5
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Duncan, D. Magyari-Köpe, B. and Nishi, Y. 2016. Hydrogen doping in HfO2 resistance change random access memory. Applied Physics Letters, Vol. 108, Issue. 4, p. 043501.


    Duncan, Dan Magyari-Kope, Blanka and Nishi, Yoshio 2016. Filament-Induced Anisotropic Oxygen Vacancy Diffusion and Charge Trapping Effects in Hafnium Oxide RRAM. IEEE Electron Device Letters, Vol. 37, Issue. 4, p. 400.


    Zhao, Liang Clima, Sergiu Magyari-Köpe, Blanka Jurczak, Malgorzata and Nishi, Yoshio 2015. Ab initio modeling of oxygen-vacancy formation in doped-HfOx RRAM: Effects of oxide phases, stoichiometry, and dopant concentrations. Applied Physics Letters, Vol. 107, Issue. 1, p. 013504.


    Magyari-Kope, Blanka Zhao, Liang Kamiya, Katsumasa Moon Young Yang, Shiraishi, Kenji and Nishi, Yoshio 2014. 2014 IEEE International Nanoelectronics Conference (INEC). p. 1.

    Magyari-Kope, Blanka Zhao, Liang Nishi, Yoshio Kamiya, Katsumasa Yang, Moon Young and Shiraishi, Kenji 2014. 2014 IEEE International Symposium on Circuits and Systems (ISCAS). p. 2021.

    ×
  • MRS Proceedings, Volume 1430
  • January 2012, mrss12-1430-e11-01

Ab-Initio Modeling of the Resistance Switching Mechanism in RRAM Devices: Case Study of Hafnium Oxide (HfO2)

  • Dan Duncan (a1), Blanka Magyari-Kope (a1) and Yoshio Nishi (a1)
  • DOI: http://dx.doi.org/10.1557/opl.2012.980
  • Published online: 01 May 2012
Abstract
ABSTRACT

The structures and energies of stoichiometric and oxygen-deficient monoclinic HfO2 were calculated using density functional theory. The electronic interactions in HfO2 were calculated using the LDA+U and GGA+U formalisms, where on-site Coulomb corrections were applied to the 5d electrons of hafnium (Ud) and the 2p electrons of oxygen (Up). Properties calculated using these techniques are compared to results obtained from LDA, GGA, hybrid functionals, and experiment. Ultimately, we show that LDA+Ud+Up and GGA+Ud+Up calculations of HfO2’s electronic and structural properties achieve a level of accuracy on par with much more computationally demanding hybrid functional techniques, such as PBE0 and HSE06.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.X. Zhao and D. Vanderbilt , Phys. Rev. B 65, 233106 (2002)

2.G.D. Wilk , R. M. Wallace , and J.M. Anthony , J. Appl. Phys. 87, 484 (2000)

3.E.P. Gusev , E. Cartier , D.A. Buchanan , M. Gribelyuk , M. Copel , H Okorn-Schmidt , and C. D’Emic , Microelectron. Eng. 59, 341 (2001)

4.R. Waser , R. Dittmann , G. Staikov , and K. Szot , Adv. Mat. 21, 2632 (2009)

6.X. Guan , S. Yu , H.-S. P. Wong , IEEE Trans. on Elect. Dev. 59, 4, 1172 (2012)

7.S. Yu , X. Guan , H.-S. P. Wong , IEEE Trans. on Elect. Dev. 59, 4, 1183 (2012)

9.Y.M. Kim and J. S. Lee , J. Appl. Phys. 104, 114115 (2008)

10.S. Lee , W.-G. Kim , S.-W. Rhee , and K. Yong , J. Electrochem. Soc. 155, 2, H92 (2008)

13.C. Vallee , P. Gonon , C. Jorel , F. El Kamel , M. Mougenot , and V. Jousseaume , Microelectron. Eng. 86, 1774 (2009)

15.V. Anisimov , J. Zaanen , and O. K. Andersen , Phys. Rev. B 44, 3 943 (1991)

17.J. X. Zheng , G. Ceder , T. Maxisch , W. K. Chim , and W. K. Choi , Phys. Rev. B 75, 104112 (2007)

18.S.-G. Lim , S. Kriventsov , T. N. Jackson , J. H. Haeni , D. G. Schlom , A. M. Balbashov , R. Uecker , P. Reiche , J. L. Freeouf , and G. Lucovsky , J. Appl. Phys. 91, 4500 (2002)

19.T.-T. Jiang , Q.-Q. Sun , Y. Li , J.-J. Guo , P. Zhou , S.-J. Ding , and D. W. Zhang , J. Appl. Phys. D: Appl. Phys. 44, 185402 (2011)

20.G. Kresse and J. Furthmuller , Phys. Rev. B 54, 16 170 (1996)

21.G. Kresse and J. Furthmuller , Comput. Mater. Sci. 6, 15 (1996)

22.P. E. Blöchl , Phys. Rev. B 50, 17953 (1994)

23.H. J. Monkhorst and J. D. Pack , Phys. Rev. B 13, 12 5188 (1976)

24.M. Cococcioni and S. Gironcoli , Phys. Rev. B 71, 035105 (2005)

25.B. J. Morgan and G. W. Watson , Phys. Rev. B 80, 233102 (2009)

27.S. Lany and A. Zunger , Phys. Rev. B 80, 085202 (2009)

28.S.-G. Park , B. Magyari-Kope , and Y. Nishi , Phys. Rev. B 82, 115109 (2010)

29.M. Korotin , T. Fujiwara , and V. Anisimov , Phys. Rev. B 62, 9 5696 (2000)

30.S. J. Clark , L. Lin , and J. Robertson , Microelectron. Eng. 88, 1464 (2011)

31.P. Broqvist and A. Pasquarello , Appl. Phys. Lett. 89, 262904 (2006)

32.H. Jiang , R. I. Gomez-Abal , P. Rinke , and M. Scheffler , Phys. Rev. B 81, 085119 (2010)

33.J. L. Gavartin , D. M. Ramo , A. L. Shluger , G. Bersuker , and B. H. Lee , App. Phys. Lett. 89, 082908, (2006)

34.A. S. Foster , F. L. Gejo , A. L. Shluger , and R. M. Nieminen , Phys. Rev. B. 65, 174117 (2002)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: