Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T14:51:10.030Z Has data issue: false hasContentIssue false

Ab initio study of magnetic properties of Fe-Mn-Al Heusler alloys

Published online by Cambridge University Press:  17 July 2013

Vladimir V. Sokolovskiy
Affiliation:
Chelyabinsk State University, Chelyabinsk, 454001, Russia National University of Science and technology "MIS&S", Moscow, 119049, Russia
Vasiliy D. Buchelnikov
Affiliation:
Chelyabinsk State University, Chelyabinsk, 454001, Russia
Mikhail A. Zagrebin
Affiliation:
Chelyabinsk State University, Chelyabinsk, 454001, Russia
Sergey V. Taskaev
Affiliation:
Chelyabinsk State University, Chelyabinsk, 454001, Russia
Vladimir V. Khovaylo
Affiliation:
National University of Science and technology "MIS&S", Moscow, 119049, Russia
Peter Entel
Affiliation:
University of Duisburg-Essen, Duisburg, D-47048, Germany
Get access

Abstract

Density functional theory (DFT) based on the spin-polarized relativistic Korringa-Kohn-Rostoker (SPR-KKR) method is used to investigate the magnetic properties of nonstoichiometric Fe2+xMn1-xAl Heusler alloys, where 0 ≤ x ≤ 0.9. The composition dependences of the magnetic exchange couplings and the Curie temperature for the cubic L21 phase are obtained. Our simulations have shown that the Fe-Fe nearest neighbors present a strong ferromagnetic coupling. Moreover, these exchange interactions are larger than other interactions. The substitution of Mn by Fe in Fe2+xMn1-xAl (0 ≤ x ≤ 0.9) leads to an increase in the Curie temperature. This tendency and the values of Curie temperatures are in agreement with the experimental results for Fe2+xMn1-xAl (x = 0, and 0.1). The highest Curie temperature was observed for the Fe-richer alloy.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Perez Alcazar, G.A., Plascak, J.A., da Silva, E.G., Phys. Rev. B 38(4), 2816 (1988).CrossRefGoogle Scholar
Bremers, H., Hesse, J., Ahlers, H., Sievert, J., Zachmann, D., J. Alloys Compd. 366 67 (2004).CrossRefGoogle Scholar
Liu, Z., Ma, X., Meng, F. and Wu, G., J. Alloys Compd. 509, 3219 (2011).CrossRefGoogle Scholar
Paduani, C., Migliavacca, A., Pottker, W.E., Schaf, J., Krause, J.C., Ardisson, J.D., Samudio Perez, C.A., Takeuchi, A.Y., Yoshida, M.I., Phys. B 398 60 (2007).CrossRefGoogle Scholar
Omori, T., Ando, K., Okano, M., Xu, X., Tanaka, Y., Ohnuma, I., Kainuma, R., Ishida, K., Science 333, 68 (2011).CrossRefGoogle Scholar
Galanakis, I.. Phys. Rev. B 71, 012413 (2005).CrossRefGoogle Scholar
Shreder, E.I., Svyazhin, A.D. and Fomina, K.A., Phys. Met. Metallorg. 113, 146 (2012).CrossRefGoogle Scholar
Azar, S.M., Hamad, B.A. and Khalifeh, J.M.. J. Magn. Magn. Matter. 324, 1776 (2012).CrossRefGoogle Scholar
Buchelnikov, V.D., Sokolovskiy, V.V., Taskaev, S.V., Khovaylo, V.V., Aliev, A.A., Khanov, L.N., Batdalov, A.B., Entel, P., Miki, H., Takagi, T., J. Phys. D: Appl. Phys. 44, 064012 (2011).CrossRefGoogle Scholar
Sokolovskiy, V.V., Buchelnikov, V.D., Zagrebin, M.A., Entel, P., Sahool, S. and Ogura, M., Phys. Rev. B 86, 134418 (2012).CrossRefGoogle Scholar
Ebert, H., SPR-KKR package Version 5.4 on http://ebert.cup.unimuenchen.de.Google Scholar
Liechtenstein, A.I., Katsnelson, M.I., Antropov, V.P., Gubanov, V.A., J. Magn. Magn. Mater. 67, 65 (1987).CrossRefGoogle Scholar
Vosko, S.H., Wilk, L., Nusair, M., Can. J. Phys. 58, 1200 (1980).CrossRefGoogle Scholar
Sasioglu, E., Sandratskii, L. M., Bruno, P., and Galanakis, I., Phys. Rev. B 72, 184415 (2005).CrossRefGoogle Scholar