Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-17T05:49:01.065Z Has data issue: false hasContentIssue false

Above and below Bandgap Excitation of Er-defect Complexes and Isolated Er in Er-implanted GaN

Published online by Cambridge University Press:  01 February 2011

A. Braud
Affiliation:
CIRIL – ISMRA, 6 Boulevard maréchal Juin, 14050 Caen cedex, France
M. Abouzaid
Affiliation:
CIRIL – ISMRA, 6 Boulevard maréchal Juin, 14050 Caen cedex, France
M. Wojdak
Affiliation:
CIRIL – ISMRA, 6 Boulevard maréchal Juin, 14050 Caen cedex, France
J. L. Doualan
Affiliation:
CIRIL – ISMRA, 6 Boulevard maréchal Juin, 14050 Caen cedex, France
R. Moncorge
Affiliation:
CIRIL – ISMRA, 6 Boulevard maréchal Juin, 14050 Caen cedex, France
B. Pipeleers
Affiliation:
Instituut voor Kern-en Stralingsfysica, Departement Natuurkunde, Celestijnenlaan 200 D, 3001 LEUVEN, Belgium
A. Vantomme
Affiliation:
Instituut voor Kern-en Stralingsfysica, Departement Natuurkunde, Celestijnenlaan 200 D, 3001 LEUVEN, Belgium
Get access

Abstract

Photoluminescence (PL) spectra, luminescence dynamics and luminescence saturation of the Er3+4I13/24I15/2 transition in Er-implanted GaN samples at 7K are investigated. Under below-gap excitation, different Er centers are identified. Several Er centers are clearly excited via local defects or impurities. Er-defect complexes excited by above or below bandgap light are compared. Luminescence dynamics study shows that the 4I13/2 manifold has a shorter lifetime when Er ions are part of Er-defect complexes than when Er ions are isolated from any defect. The saturation of Er luminescence is investigated for the different types of Er center corresponding to specific excitation wavelengths.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Steckl, A.J., Lee, D.S., Garter, M.J., Baker, C.C., Wang, Y. and Jones, R. IEEE J. of Sel. Topics in Quant. Elec., 8 (4) (2002) 749.Google Scholar
2. Rare Earth Doped Semiconductors II, in S. Coffa, A. Polman, R.N. Schwartz (Eds), Materials research Society proceedings, Vol. 422, 1996.Google Scholar
3. Taguchi, A. and Takahei, K., J. of Appl. Phys., 79 (8) (1996) 4330.Google Scholar
4. Braud, A., Doualan, J.L., Moncorge, R., Pipeleers, B., Vantomme, A., Mat. Sc. Eng. B 105 (2003) to be published.Google Scholar
5. Kim, S., Rhee, S.J., Turnbull, D.A., Reuter, E.E., Li, X., Coleman, J.J. and Bishop, S.G., Appl. Phys. Lett., Vol. 71 (2) (1997) 231.Google Scholar
6. Kim, S., Rhee, S.J., Li, X., Coleman, J.J. and Bishop, S.G.,, Appl. Phys. Lett., Vol. 76 (17) (2000) 2403 Google Scholar
7. Inokuti, M. and Hirayama, F., J. Chem. Phys, 43 (1965) 1978 Google Scholar
8. Yokota, M. and Tanimoto, O., J. Phys. Soc. Japan, 22 (1967) 779 Google Scholar