Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T10:32:39.569Z Has data issue: false hasContentIssue false

Air-stable solution processed Cu2ZnSn(Sx,Se(1-x))4 thin film solar cells: influence of ink precursors and preparation process

Published online by Cambridge University Press:  29 August 2013

Xianzhong Lin*
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Jaison Kavalakkatt
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Martha Ch. Lux-Steiner
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany Freie Universität Berlin, Germany
Ahmed Ennaoui*
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Get access

Abstract

Quaternary semiconductors, Cu2ZnSnS4 and Cu2ZnSnSe4 which contain only earth-abundant elements, have been considered as the alternative absorber layers to Cu(In,Ga)Se2 (CIGS) for thin film solar cells although CIGS-based solar cells have achieved efficiencies over 20 %. In this work we report an air-stable route for preparation of Cu2ZnSn(Sx,Se(1-x))4 (CZTSSe) thin film absorbers by a solution process based on the binary and ternary chalcogenide nanoparticle precursors dispersed in organic solvents. The CZTSSe absorber layers were achieved by spin coating of the ink precursors followed by annealing under Ar/Se atmosphere at temperature up to 580°C. We have investigated the influence of the annealing temperature on the reduction or elimination of detrimental secondary phases. X-ray diffraction combined with Raman spectroscopy was utilized to better identify the secondary phases existing in the absorber layers. Solar cells were completed by chemical bath deposited CdS buffer layer followed by sputtered i-ZnO/ZnO: Al bi-layers and evaporated Ni/Al grids.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W. and Powalla, M., Progress in Photovoltaics: Research and Applications 19 (7), 894897 (2011).CrossRefGoogle Scholar
Cao, Y., Denny, M. S., Caspar, J. V., Farneth, W. E., Guo, Q., Ionkin, A. S., Johnson, L. K., Lu, M., Malajovich, I., Radu, D., Rosenfeld, H. D., Choudhury, K. R. and Wu, W., J. Am. Chem. Soc. 134, 1564415647 (2012).CrossRefGoogle Scholar
Guo, Q., Ford, G. M., Yang, W.-C., Walker, B. C., Stach, E. A., Hillhouse, H. W. and Agrawal, R., J. Am. Chem. Soc. 132, 1738417386 (2010).CrossRefGoogle Scholar
Todorov, T. K., Reuter, K. B. and Mitzi, D. B., Advanced Materials 22 (20), E156E159 (2010).CrossRefGoogle Scholar
Todorov, T. K., Tang, J., Bag, S., Gunawan, O., Gokmen, T., Zhu, Y. and Mitzi, D. B., Advanced Energy Materials 3 (1), 3438 (2013).CrossRefGoogle Scholar
Yang, W., Duan, H.-S., Bob, B., Zhou, H., Lei, B., Chung, C.-H., Li, S.-H., Hou, W. W. and Yang, Y., Advanced Materials 24 (47), 63236329 (2012).CrossRefGoogle Scholar
Olekseyuk, I. D., Dudchak, I. V. and Piskach, L. V., Journal of Alloys and Compounds 368 (1-2), 135143 (2004).CrossRefGoogle Scholar
Siebentritt, S., Thin Solid Films, 10.1016/j.tsf.2012.1012.1089 (2013).Google Scholar
Lin, X., Kavalakkatt, J., Kornhuber, K., Levcenko, S., Lux-Steiner, M. C. and Ennaoui, A., Thin Solid Films 535, 1013 (2013).CrossRefGoogle Scholar
Lin, X., Steigert, A., Lux-Steiner, M. C. and Ennaoui, A., RSC Advances 2 (26), 9798 (2012).CrossRefGoogle Scholar
Lin, X., Kavalakkatt, J., Lux-Steiner, M. C. and Ennaoui, A., 27th European Photovoltaic Solar Energy Conference and Exhibition; Frankfurt, Main 3DV, 2794-2797 (2012).Google Scholar
Schorr, S., Weber, A., Honkimäki, V. and Schock, H.-W., Thin Solid Films 517, 24612464 (2009).CrossRefGoogle Scholar
Hsu, W.-C., Bob, B., Yang, W., Chung, C.-H. and Yang, Y., Energy & Environmental Science 5 (9), 8564 (2012).CrossRefGoogle Scholar
Weber, A., Mainz, R. and Schock, H. W., Journal of Applied Physics 107 (1), 013516 (2010).CrossRefGoogle Scholar
Momose, N., Htay, M. T., Sakurai, K., Iwano, S., Hashimoto, Y. and Ito, K., Applied Physics Express 5 (8), 081201 (2012).CrossRefGoogle Scholar
Vegard, L., Zeitschrift für Physik 5 17 (1921).Google Scholar
He, J., Sun, L., Chen, S., Chen, Y., Yang, P. and Chu, J., Journal of Alloys and Compounds 511 (1), 129132 (2012).CrossRefGoogle Scholar
Mitzi, D. B., Gunawan, O., Todorov, T. K., Wang, K. and Guha, S., Solar Energy Materials and Solar Cells 95 (6), 14211436 (2011).CrossRefGoogle Scholar
Gürel, T., Sevik, C. and Çağın, T., Physical Review B 84 (20) (2011).CrossRefGoogle Scholar
Chandrasekhar, H., Humphreys, R., Zwick, U. and Cardona, M., Physical Review B 15 (4), 21772183 (1977).CrossRefGoogle Scholar
Agnihotri, O. P., Garg, A. K. and Sehgal, H. K., Solid State Communications 17, 15371540 (1975).CrossRefGoogle Scholar