Hostname: page-component-76dd75c94c-5fx6p Total loading time: 0 Render date: 2024-04-30T09:01:49.663Z Has data issue: false hasContentIssue false

Anisotropic Si Etching by a Supersonic Cl2 Beam

Published online by Cambridge University Press:  25 February 2011

Yuden Teraoka
Affiliation:
NEC Corporation, Opto-Electronics Basic Research Laboratory, Opto-Electronics Research Laboratories, 34 Miyukigaoka, Tsukuba, Ibaraki 305, Japan
Fumihiko Uesugi
Affiliation:
NEC Corporation, Opto-Electronics Basic Research Laboratory, Opto-Electronics Research Laboratories, 34 Miyukigaoka, Tsukuba, Ibaraki 305, Japan
Iwao Nishiyama
Affiliation:
NEC Corporation, Opto-Electronics Basic Research Laboratory, Opto-Electronics Research Laboratories, 34 Miyukigaoka, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Perpendicular etching profiles of n+-Si(100) are obtained with a supersonic Cl2 beam at substrate temperature of 900°C. Although small undercuts are observed just below the SiO2 mask, the side wall etching caused by the background Cl2 is almost negligible. An aspect ratio of greater than 6 and selectivity of greater than 8000 are obtained with 0.5 μm line & space mask pattern. From Arrhenius plots of etch rates, an effective activation energy of the nozzle beam etching is determined to 0.53 eV. Assuming that the reaction product is SiCl2, the reaction probability is estimated to be 19% at 900°C. Highly anisotropic etching of the Si(100) obtained here is due to the large reaction probability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hara, T., Hamagaki, M., Sanda, A., Aoyagi, Y., Namba, S., J. Vac. Sci. Technol. B5, 366 (1987).Google Scholar
2. Yu, J.Z., Hara, T., Hamagaki, M., Yoshinaga, T., Aoyagi, Y., Namba, S., J. Vac. Sci. Technol. B6, 1626 (1988).Google Scholar
3. Mizutani, T., Nishimatsu, S., J. Vac. Sci. Technol. 137, 547 (1989).Google Scholar
4. Suzuki, K., Hiraoka, S., Nishimatsu, S., J. Appl. Phys. 64, 3697 (1988).CrossRefGoogle Scholar
5. Qin, Q.Z., Li, Y.L., Jin, Z.K., Zhang, Z.J., Yang, Y.Y., Jia, W.J., Zheng, Q.K., Surface Science, 207, 142 (1988).Google Scholar
6. Beckerle, J.D., Johnson, A.D., Yang, Q.Y., Ceyer, S.T., J. Chem. Phys. 91, 5756 (1989).Google Scholar
7. DeLouise, L.A., J. Chem. Phys. 94, 1528(1991); Surface Science Letters, 244, L87(1991).CrossRefGoogle Scholar
8. Engstrom, J.R., Nelson, M.M., Engel, T., Surface Science, 215, 437 (1989).CrossRefGoogle Scholar
9. Levis, R.J., Waltman, C.J., Cousins, L.M., Copeland, R.G., Leone, S.R., J. Vac. Sci. Technol. A8, 3118 (1990).Google Scholar
10. Miyake, T., Soeki, S., Kato, H., Nakamura, T., Namiki, A., Phys. Rev. B42, 11801 (1990).CrossRefGoogle Scholar
11. Takahagi, T., Ishitani, A., Kuroda, H., Nagasawa, Y., Ito, H., Wakao, S., J. Appl. Phys. 33, 1 (1990).Google Scholar
12. Ogryzlo, E.A., Flamm, D.L., Ibbotson, D.E., Mucha, J.A., J. Appl. Phys. 64, 6510 (1988).CrossRefGoogle Scholar
13. Dismukes, J.P., Ulmer, R., J. Electrochem. Soc. 118, 634 (1971).CrossRefGoogle Scholar
14. Oostra, D.J., Haring, A., van Ingen, R.P., de Vries, A.E., J. Appl. Phys. 64, 315 (1988).CrossRefGoogle Scholar
15. Matsuo, J., Karahashi, K., Sato, A., Hijiya, S., Proceedings of the 13th symposium on dry process, 23(1991).Google Scholar
16. Jackman, R.B., Ebert, H., Foord, J.S., Surface Science, 176, 183 (1986).CrossRefGoogle Scholar