Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-04-30T12:04:17.752Z Has data issue: false hasContentIssue false

Assessment of Intrinsic-Layer Growth Temperature to High-Deposition-Rate a-Si:H n-i-p Solar Cells Deposited by Hot-Wire CVD

Published online by Cambridge University Press:  15 February 2011

Qi Wang
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO, USA
Eugene Iwaniczko
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO, USA
Yueqin Xu
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO, USA
Brent P. Nelson
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO, USA
A. H. Mahan
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO, USA
Get access

Abstract

We report progress in hydrogenated amorphous silicon n-i-p solar cells with the i-layer grown by the hot-wire chemical vapor deposition technique. Early research showed that we grew device-quality materials with low saturated defect density (2 × 106/cm3), high initial ambipolar diffusion length (~2000 Å) and low hydrogen content (<1%). One of the major barriers to implementing this material into solar cells is the high substrate temperature required (>400°C). We re-assess the effects of low substrate temperature on the property of the films and the performance of the solar cells as an alternative avenue to solving this problem. We find that the material grown at 300°C can have similar values of saturated defect density and ambipolar diffusion length as the one grown greater than 400°C. We also study the effect of i-layer substrate temperature ranging from 280° to 440°C for n-i-p solar cells. We now consistently grow devices with Fill Factor (FF) greater than 0.66, with the best close to 0.70 at lower substrate temperature. A collaboration with United Solar System, in where they grew the p-layer and top contact, produced devices with initial efficiencies as high as 9.8%. We produce n-i-p solar cells with initial efficiencies as high as 8% when we grow all the hydrogenated amorphous silicon and top contact layers. All these i-layers are grown at deposition rates of 16 to 18 Å/sec. We need to further improve our p-layer and transparent conductor layer to equal the collaborative cell efficiency. We also report light-soaking results of these devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S., and Balberg, I., J. Appl. Phys., 69, p. 6728 (1991).Google Scholar
2. Wu, Y., Stephen, J.T., Han, D.X., Rutland, J.M., Crandall, R.S., and Mahan, A.H., Phys. Rev. Lett., 77, p. 2049 (1996).Google Scholar
3. Mahan, A.H, Williamson, DL, and Furtak, T.E., Mat. Res. Soc. Proc., Vol. 467, p. 657 (1997).Google Scholar
4. Liu, X., White, B.E. Jr, Pohl, R.O., Iwaniczko, E., Jones, K.M., Mahan, A.H., Nelson, B.P., Crandall, R.S., and Veprek, S., Phys. Rev. Lett., 78, p. 4418 (1997).Google Scholar
5. Nelson, B.P., Iwaniczko, E., Schropp, R.E.I., Mahan, A.H., Molenbroek, E.C., Salamon, S., and Crandall, R. S.. 12th PVSC, pp. 679682 (1994).Google Scholar
6. Papadopulos, P., Scholz, A., Bauer, S., Schroeder, B., and Oechsner, H., J. Non-Cryst. Sol., 164–166, p. 87 (1993).Google Scholar
7. Mahan, A.H, Iwaniczko, E, Nelson, B.P., Reedy, R.C. Jr Unold, T., Crandall, R.S., Guha, S., and Yang, J., AIP Conf. Proc., 394, p. 27 (1996).Google Scholar
8. Bauer, S., Herst, W., Schroeder, B., and Oechsner, H., Proc. 26th IEEE PV Spec. Conf., p. 719 (1997).Google Scholar
9. Mahan, A.H., Reedy, R.C. Jr, Iwaniczko, E., Wang, Qi, Nelson, B.P., Xu, Y., Gallagher, A. C., Branz, H.M., Crandall, R.S., Yang, J., and Guha, S.. Mat. Res. Soc. Proc., V507, p.119 (1998).Google Scholar
10. Vanecek, M., Mahan, A.H., Nelson, B.P., and Crandall, R. S., Proc. 11th European PVSolar Energy Conf., p. 96. (1993).Google Scholar
11. Yang, J., Xu, X., and Guha, S., Mat. Res. Soc. Proc. Vol 336, p. 687 (1994).Google Scholar
12. Yang, L. and Chen, L.-F., Mat. Res. Soc. Proc. Vol 336, p. 669 (1994).Google Scholar
13. Siamchai, P. and Konagai, M., Appl. Phys. Lett., 67, p. 3468 (1995).Google Scholar
14. Rech, B., Wieder, S., Siebke, F., Beneking, C., and Wagner, H.. Mat. Res. Soc. Proc., Vol 420, p. 33 (1996).Google Scholar
15. Han, Daxing, Gotoh, Tamihiro, Nishio, Motoi, Sakamoto, Tomonari, Nonomura, Shuichi, Nitta, Shoji, Wang, Qi, Iwaniczko, E., Mahan, Harv. National Center for Photovoltaic Program Review, 462, p. 260 (1998).Google Scholar
16. Wang, Qi, Antoniadis, Homer, Schiff, E. A., and Guha, S., Mat. Res. Soc. Proc. Vol 258, p. 881 (1992).Google Scholar