Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-30T04:23:58.180Z Has data issue: false hasContentIssue false

Bombardment by Reflection - A Novel Method to Prepare High Quality Hydrogenated Amorphous Germanium by Anodic PCVD

Published online by Cambridge University Press:  15 February 2011

Annette Diez
Affiliation:
Institut für Experimentelle Physik/ Abt. FestkÖrperphysik derOtto-von-Guericke-Universität PF 4120, D - 39016 Magdeburg, Germany
Twlo P. Drüsedau
Affiliation:
Institut für Experimentelle Physik/ Abt. FestkÖrperphysik derOtto-von-Guericke-Universität PF 4120, D - 39016 Magdeburg, Germany
Get access

Abstract

Deposition of amorphous germanium by anodic PCVD was performed changing the germane/hydrogen dilution ratio from 1/6 to 1/100. Films deposited under high dilution of germane are of a high mechanical density (92.5 % of bulk) and good optoelectronic properties (electrical conductivity at room temperature σ=10−5 (Ω cm)−1, majority carrier mobility-lifetime product at λ=1200 nm ημ=x 10−7 cm2/V). The quality of the films is increased by deposition at increasing pumping speed for hydrogen (lower hydrogen pressure) keeping the other parameters constant. It is suggested that fast atomic hydrogen originating from a backscattering process at the powered electrode bombard the growing film and contribute to the improved quality of the a-Ge:H. Also, the growth kinetics of the films is changed from linear to parabolic dependence on germane flow interchanging deposition from high to low hydrogen pressure. This effect is rationalized in terms of a contribution of energetic atomic hydrogen to the dissociation of germane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Drüsedau, T. P. and Schröder, B., Solid State Phenomena 44–46, 425 (1995).Google Scholar
2. Turner, W. A., Jones, S. J., Pang, D., Bateman, B. F., Chen, J. H., Li, Y. M., Marques, F. C., Wetsel, A. E., Wickboldt, P., Paul, W., Bodart, J., Norberg, R. E., El Zawawi, I. and Theye, M. L., Journal of Applied Pysics 67, 7430 (1990).Google Scholar
3. Karg, F. H., Böhm, H. and Pierz, K., J. Non-Cryst. Solids 114, 477 (1989).Google Scholar
4. Drüsedau, T., Annen, A. and Schröder, B., Mat. Res. Soc. Symp. Proc. 297, 717 (1993).Google Scholar
5. Godet, C., El Zawawi, I., Theye, M. L., Gauthier, M. and Stoquert, J. P., Solid State Commun. 74, 721 (1990).Google Scholar
6. Drüsedau, T., J. Non-Cryst. Solids 135, 204 (1991).Google Scholar
7. Klabunde, F., Löhmann, M., Biäsing, J. and Drüsedau, T., J. Appl. Phys. 80, 6266 (1996).Google Scholar
8. Lucovsky, G., Chao, S. S., Yang, J., Tyler, J. E., Ross, R. C. and Czubatyj, W., Phys. Rev. B 31, 2190 (1985).Google Scholar
9. Paul, W., Jones, S. J., Turner, W. A. and Wickboldt, P., J. Non-Cryst. Solids 141, 271 (1992).Google Scholar
10. McDaniel, E. W., Colision Phenomena in Ionized Gases, (John Wiley & Sons, New York, 1964).Google Scholar
11. Drüsedau, T., Klabunde, F., Veit, P. and Hempel, T., phys. stat. sol. (a) 161, in the press (1997).Google Scholar
12. Robinson, R. S., J. Vac. Sci. Technol. A 16, 185 (1979).Google Scholar
13. Doyle, J. R., Doughty, D. A. and Gallagher, A., Journal of Applied Pysics 69, 4169 (1991).Google Scholar