Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T18:04:55.490Z Has data issue: false hasContentIssue false

Carrier density in p-type ZnTe with nitrogen and copper doping

Published online by Cambridge University Press:  29 August 2013

Maryam Abazari
Affiliation:
GE Global Research Center 1 Research Circle, Niskayuna, NY 12309
Faisal R Ahmad
Affiliation:
GE Global Research Center 1 Research Circle, Niskayuna, NY 12309
Kamala C Raghavan
Affiliation:
GE Global Research Center 1 Research Circle, Niskayuna, NY 12309
James R Cournoyer
Affiliation:
GE Global Research Center 1 Research Circle, Niskayuna, NY 12309
Jae-Hyuk Her
Affiliation:
GE Global Research Center 1 Research Circle, Niskayuna, NY 12309
Robert Davis
Affiliation:
GE Global Research Center 1 Research Circle, Niskayuna, NY 12309
John Chera
Affiliation:
GE Global Research Center 1 Research Circle, Niskayuna, NY 12309
Vince Smentkowski
Affiliation:
GE Global Research Center 1 Research Circle, Niskayuna, NY 12309
Bas A Korevaar
Affiliation:
GE Global Research Center 1 Research Circle, Niskayuna, NY 12309
Get access

Abstract

In this paper, we demonstrate deposition methods and conditions that allow the control of the electrical properties of doped ZnTe grown by RF magnetron sputtering using both nitrogen and copper as dopants. The carrier density of the films was characterized using a van der Pauw Hall effect measurement method. We demonstrate how the concentration of nitrogen in the plasma during the growth of the film impacts the conductivity of the ZnTe films. Films with hole concentrations in excess of 1018 cm-3 and a high degree of crystallinity were successfully grown. Similarly, we demonstrate that the hole concentration in the Cu-doped ZnTe can be varied by varying the amount of copper introduced in the films. We also observe that annealing the copper doped ZnTe films increases the carrier density, whereas annealing the nitrogen doped ZnTe films causes a decrease in carrier concentration and conductivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Britt, J. and Ferekides, C., “Thin‐film CdS/CdTe solar cell with 15.8% efficiencyAppl. Phys. Lett. 62, (1993) 2851–3.CrossRefGoogle Scholar
Wu, X., Keane, J.C., Dhere, R.G., DeHart, C., Albin, D.S., Duda, A., Gessert, T.A., Asher, S., Levi, D.H., and Sheldon, P., Proc. of 17th E-PVSEC (2001) 995 Google Scholar
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Prog. Photovolt: Res. Appl. 21 (2013) 1 CrossRefGoogle Scholar
Narayanswamy, C., Gessert, T.A. and Ashe, S.E., “Analysis of Cu Diffusion in ZnTe-Based Contacts for Thin-Film CdS/CdTe Solar Cells” Presented at the National Center for Photovoltaics Program Review Meeting Denver, ColoradoSeptember 8-11, 1998 CrossRefGoogle Scholar
Dobson, K. D., Visoly-Fisher, I., Hodes, G., and Cahen, D., Sol. Energy Mater. “Stability of CdTe/CdS thin film solar cells”Sol. Cells 62, (2000) 295.CrossRefGoogle Scholar
Bätzner, D. L., Romeo, A., Terheggen, M., Dobeli, M., Zogg, H., and Tiwari, A. N., “Stability aspects in CdS/CdTe solar cellsThin Solid Films 451452, (2004) 536.CrossRefGoogle Scholar
Gessert, T. A., Li, X., Coutts, T. J., Mason, A. R., and Matson, R. J., “Dependence of material properties of radio frequency magnetronsputtered, Cu-doped, ZnTe thin films on deposition conditionsJ. Vac. Sci. Technol. A 12(4) (1994) pp 1501–6CrossRefGoogle Scholar
Jaegermann, W., Klein, A., Fritsche, J., Kraft, D., and Späth, B., “Interfaces in CdTe solar cells: From idealized concepts to technologyMater. Res. Soc. Symp. Proc. 865 (2005) F6.1.CrossRefGoogle Scholar
Tang, J., Mao, D., Trefny, J. U., “Effect of Cu doping on the properties of ZnTe:Cu thin films and CdS/CdTe/ZnTe solar cellsCP394 NREL/SNL photovoltaics program review (1997)CrossRefGoogle Scholar
Bellakhder, H., Outzourhit, A., Ameziane, E.L., “Study of ZnTe thin films deposited by r.f. sputtering,” Thin Solid Films 382 (2001) pp 30–3CrossRefGoogle Scholar
Bicknell-Tassius, R.N., Kuhn, T.A., Ossau, W., “Photoassisted MBE of CdTe thin filmsApp. Surf. Sci. 36 (1989) 95.CrossRefGoogle Scholar
Gunshor, R.L., Koladziejski, L.A., Otsuka, N., Datta, S., “ZnSe-ZnMnSe and CdTe-CdMnTe SuperlatticesSurf. Sci. 174 (1986) 522.CrossRefGoogle Scholar
Pal, U., Saha, S., Chaudhuri, A.K., Rao, V.V., Banerjee, H.D., “The anomalous photovoltaic effect in polycrystalline zinc telluride filmsJ. Phys. D: Appl. Phys. 22 (1989) 965.CrossRefGoogle Scholar
Baron, T., Saminadayar, K., Tatarenko, S., “Plasma nitrogen doping efficiency in molecular beam epitaxy of tellurium based II-VI compounds.”J. Cryst. Growth 159 (1996) 271.CrossRefGoogle Scholar
Baron, T., Saminadayar, K., and Magnea, N., “Nitrogen doping of Te-based II-VI compounds during growth by molecular beam epitaxyJ. Appl. Phys. 83, (1998) 1354–6.CrossRefGoogle Scholar
Späth, B., Fritsche, J., Klein, A., and Jaegermann, W., “Nitrogen doping of ZnTe and its influence on CdTe/ZnTe interfacesAppl. Phys. Lett. 90, (2007) 062112–4CrossRefGoogle Scholar