Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T08:53:52.284Z Has data issue: false hasContentIssue false

Disposable organic fluorescence biosensor for water pollution monitoring.

Published online by Cambridge University Press:  07 July 2011

Florent Lefèvre
Affiliation:
Department of Computer Science, Resmiq, NanoQAM, Université du Québec à Montréal, Montréal, QC, H3C 3P8, CANADA.
Luping Yu
Affiliation:
Department of Chemistry and the James Franck Institute, The University of Chicago, E. 57th Street, Chicago, Illinois 60637, U.S.A.
Vamsy Chodavarapu
Affiliation:
Department of Electrical and Computer Engineering, Resmiq, McGill University, 3480 University St., Room 642, Montréal, QC, H3A 2A7, CANADA.
Philippe Juneau
Affiliation:
Department of biology, TOXEN, Université du Québec à Montréal, Montréal, QC, H3C 3P8, CANADA
Ricardo Izquierdo
Affiliation:
Department of Computer Science, Resmiq, NanoQAM, Université du Québec à Montréal, Montréal, QC, H3C 3P8, CANADA.
Get access

Abstract

We report the first disposable fluorescent biosensor based on algae, with an organic light emitting diode and an organic photodetector (OPD) miniaturized into a microfluidic chip. A DPVBi OLED was used as the excitation source, while a blend of PTB3/PCBM was used for the organic photodetector. The fluorescence biosensor is integrated in a microfluidic chip made from polymeric materials such as (poly)dimethylsiloxane (PDMS), which is transparent, biocompatible and can easily be processed by conventional lithography. The complete detector is designed to detect Chlamydomonas reinhardtii green algae fluorescence in the microfluidic chamber. Algal chlorophyll fluorescence is a physiological parameter routinely used to measure the photochemical efficiency of PSII. This measurement is a reliable and non-invasive method to determine the toxicity of pollutants like herbicides and metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Buonasera, K., Pezzotti, G., Scognamiglio, V., Tibuzzi, A. and Giardi, M.T., J. of Agricultural and Food Chem., 58 5982 (2010).10.1021/jf9027602Google Scholar
[2] Juneau, P., Qiu, B. and Deblois, C.P., Tox. and Env. Chem., 89 609 (2007).10.1080/02772240701561569Google Scholar
[3] Tibuzzi, A., Rea, G., Pezzotti, G., Esposito, D., Johanningmeier, U. and Giardi, M.T., J. Phys. Cond. Matter, 19 (2007).10.1088/0953-8984/19/39/395006Google Scholar
[4] Shinar, J. and Shinar, R., J. Phys. D: Applied Physics, 41 (2008).10.1088/0022-3727/41/13/133001Google Scholar
[5] Pais, A., Banerjee, A., Klotzkin, D. and Papautsky, I., Lab on a Chip, 8 794 (2008).10.1039/b715143hGoogle Scholar
[6] Maxwell, K. and Johnson, G.N., J. Experimental Botany, 51 659 (2000).10.1093/jexbot/51.345.659Google Scholar
[7] Liang, Y., Feng, D., Wu, Y., Tsai, S.T., Li, G., Ray, C. and Yu, L., J. Am. Chem. Soc., 131 7792 (2009).10.1021/ja901545qGoogle Scholar
[8] Bang, H.S., Lee, D.U., Kim, T.W., Han, S.M., Seo, J.H. and Kim, Y.K., Thin Solid Films 516 5649 (2008).10.1016/j.tsf.2007.07.034Google Scholar
[9] Lefèvre, F., Izquierdo, R. and Schougaard, S.B., IEEE-NEWCAS conf. 318-321 (2008).Google Scholar
[10] Lefèvre, F., Yu, L., Chodavarapu, V., Juneau, P. and Izquierdo, R., Sens. Act. B (unpublished).Google Scholar
[11] Force, L., Critchley, C. and van Rensen, J. J.S., Photosynthesis Research 78 17 (2003).10.1023/A:1026012116709Google Scholar