Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-05T22:14:24.426Z Has data issue: false hasContentIssue false

A DLTS study of a ZnO microwire, a thin film and bulk material

Published online by Cambridge University Press:  27 February 2014

Florian Schmidt
Affiliation:
Universität Leipzig, Institut für Experimentelle Physik II, Linnéstraße 5, 04103 Leipzig, Germany
Peter Schlupp
Affiliation:
Universität Leipzig, Institut für Experimentelle Physik II, Linnéstraße 5, 04103 Leipzig, Germany
Stefan Müller
Affiliation:
Universität Leipzig, Institut für Experimentelle Physik II, Linnéstraße 5, 04103 Leipzig, Germany
Christof Peter Dietrich
Affiliation:
Universität Leipzig, Institut für Experimentelle Physik II, Linnéstraße 5, 04103 Leipzig, Germany
Holger von Wenckstern
Affiliation:
Universität Leipzig, Institut für Experimentelle Physik II, Linnéstraße 5, 04103 Leipzig, Germany
Marius Grundmann
Affiliation:
Universität Leipzig, Institut für Experimentelle Physik II, Linnéstraße 5, 04103 Leipzig, Germany
Robert Heinhold
Affiliation:
The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand
Hyung-Suk Kim
Affiliation:
The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand
Martin Ward Allen
Affiliation:
The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand
Get access

Abstract

We have investigated the electrical properties of a ZnO microwire grown by carbo-thermal evaporation, a ZnO thin film grown by pulsed-laser deposition on an a-plane sapphire, and a hydrothermally grown Zn-face ZnO single crystal (Tokyo Denpa Co. Ltd.). The samples were investigated by means of current-voltage measurements, capacitance-voltage measurements, and deep-level transient spectroscopy.

The defects T2 [1,2] and E3 [1,3,4] were identified in all three sample types. Additionally, in the single crystal and thin film samples E64 [5] and E4 [1] were detected. These findings support the common opinion that T2 is an intrinsic defect since it is found in all the samples investigated and thus its occurrence is not related to any growth technique.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Frank, T., Pensl, G., Tena-Zaera, R., Zúñiga-Pérez, J., Martínez-Tomás, C., Muñoz-Sanjosé, V., Ohshima, T., Itoh, H., Hofmann, D., Pfisterer, D., Sann, J., Meyer, B., Appl. Phys. A 88, 141 (2007).CrossRefGoogle Scholar
Schmidt, M., Ellguth, M., Karsthof, R., von Wenckstern, H., Pickenhain, R., Grundmann, M., Brauer, G., Ling, F. C. C., Phys. Status Solidi B 249, No. 3, 588 (2012).CrossRefGoogle Scholar
von Wenckstern, H., Brandt, M., Schmidt, H., Biehne, G., Pickenhain, R., Hochmuth, H., Lorenz, M., Grundmann, M., Appl. Phys. A 88, 135 (2007).CrossRefGoogle Scholar
Rohatgi, A., Pang, S. K., Gupta, T. K., and Straub, W. D., J. Appl. Phys. 63, 5375 (1988).CrossRefGoogle Scholar
von Wenckstern, H, Biehne, G., Lorenz, M., Grundmann, M., Auret, F. D., Meyer, W. E., van Rensburg, P. J. J., Hayes, M., and Nel, J. M., J. Korean Phys. Soc. 53, 2861 (2008).CrossRefGoogle Scholar
Schmidt, F., von Wenckstern, H., Spemann, D., Grundmann, M., Appl. Phys. Lett. 101, 012103 (2012).CrossRefGoogle Scholar
Dietrich, C. P., Brandt, M., Lange, M., Kupper, J., Böntgen, T., von Wenckstern, H., and Grundmann, M., J. Appl. Phys. 109, 013712 (2011).CrossRefGoogle Scholar
Oba, F., Choi, M., Togo, A., and Tanaka, I., Sci. Technol. Adv. Mater. 12, 034302 (2011).CrossRefGoogle Scholar
Broniatowski, A., Blosse, A., Srivastava, P. C., and Bourgoin, J. C., J. Appl. Phys. 54, 2907 (1983).CrossRefGoogle Scholar