Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-4v6tc Total loading time: 0.459 Render date: 2023-02-01T03:07:22.867Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Electron Microscopy, Electrical Activity, Artefacts and the Assessment of Semiconductor Epitaxial Growth

Published online by Cambridge University Press:  10 February 2011

Paul D. Brown
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK.
Colin J. Humphreys
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK.
Get access

Abstract

The characterisation of semiconductor thin films and device structures increasingly requires the use of a variety of complementary electron microscope-based techniques as feature sizes decrease. We illustrate how layer electrical and structural properties can be correlated: firstly averaged over the bulk and then on the individual defect scale, e.g. scanning transmission electron beam induced conductivity can be used to image the recombination activity of orthogonal <110> misfit dislocations within relaxed MBE grown Si/Si1-xGex/Si(001) heterostructures on the sub-micrometre scale. There is also need for improved understanding of sample preparation procedures and imaging conditions such that materials issues relevant to ULSI development can be addressed without hindrance from artefact structures. Hence, we consider how point defects interact under the imaging electron beam and the relative merits of argon ion milling, reactive ion beam etching, focused ion beam milling and plasma cleaning when used for TEM sample preparation. Advances in sample preparation procedures must also respect inherent problems such as thin foil surface relaxation effects, e.g. cleaved wedge geometries are more appropriate than conventional cross-sections for the quantitative characterisation of δ-doped layers. Choice of the right imaging technique for the problem to be addressed is illustrated through consideration of polySi/Si emitter interfaces within bipolar transistor structures. The development of microscopies for the rapid analysis of electronic materials requires wider consideration of non-destructive techniques of assessment, e.g. reflection high energy electron diffraction in a modified TEM is briefly described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Broers, A., Proceedings of the International Centennial Symposium on the Electron, University of Cambridge, Sept. 15–17, 1997, in press.Google Scholar
2. Smith, J. P., Eccleston, W., Brown, P. D. and Humphreys, C. J., J. Electrochem. Soc., to be published.Google Scholar
3. Nakshita, T., Hirose, M. and Osaka, Y., Japan J. Appl. Phys. 23, p146 (1984).10.1143/JJAP.23.146CrossRefGoogle Scholar
4. Spear, W. E. and Comber, P. G. Le, Proc 7th Int. Conf. Amorphous and Liquid Semiconductors p309 (1977).Google Scholar
5. Batstone, J. L. and Hayzelden, C., Inst. Phys. Conf. Ser. No. 134, p165 (1993).Google Scholar
6. Petroff, P. M., Logan, R. A. and Savage, A., Phys. Rev. Lett. 44, p287 (1980); ibid, J. Microsc. 118, p 255 (1980).CrossRefGoogle Scholar
7. Brown, P. D. and Humphreys, C. J., J. Appl. Phys. 80, p2527 (1996); ibid, Inst. Phys. Conf. Ser. No. 147, p285 (1995).CrossRefGoogle Scholar
8. Ourmazd, A. and Booker, G. R., phys. stat. sol. A55, p771 (1979).10.1002/pssa.2210550249CrossRefGoogle Scholar
9. Donolato, C., phys. stat. sol. A66, p445 (1981).10.1002/pssa.2210660205CrossRefGoogle Scholar
10. Fraser, H. L., Maher, D. M., Knoell, R. V., Eaglesham, D. J., Humphreys, C. J. and Bean, J. C., J. Vacuum Sci. Technol. B7, p210 (1989).10.1116/1.584718CrossRefGoogle Scholar
10. Furuya, K. and Saito, T., J. Appl. Phys. 80, p1922 (1996).10.1063/1.362941CrossRefGoogle Scholar
11. Ross, F. M., Hull, R., Bahnck, D., Bean, J. C., Peticolas, L. T., King, C. A. and Kola, R. R., Inst. Phys. Conf. Ser. No. 134, p245 (1993).Google Scholar
12. Furuya, K. and Saito, T., J. Appl. Phys. 80, p1922 (1996).10.1063/1.362941CrossRefGoogle Scholar
13. Ohno, Y. and Takeda, S., J. Electron. Microsc. 45, p73 (1996).CrossRefGoogle Scholar
14. Loginov, Y. Y., Brown, P. D. and Humphreys, C. J., Mat. Res. Soc. Symp. Proc. Vol. 373, p529 (1995).CrossRefGoogle Scholar
15. Wada, T., Defects and Dffusion Forum Vols 117–118, p13 (1995).CrossRefGoogle Scholar
16. Chew, N. G. and Cullis, A. G., Ultramicroscopy 23, p175 (1987).CrossRefGoogle Scholar
17. Loginov, Y. Y., Brown, P. D. and Thomson, N., phys. stat. sol. 126, p63 (1991).10.1002/pssa.2211260107CrossRefGoogle Scholar
18. Loginov, Y. Y., Brown, P. D., Thomson, N. and Durose, K., J. Crystal Growth 117, p682 (1992).CrossRefGoogle Scholar
19. Loginov, Y. Y, Brown, P. D. and Humphreys, C. J., Mat. Sci. Forum 196–201, p1461 (1995).CrossRefGoogle Scholar
20. Thangaraj, N. and Wessels, B. W., J. Appl. Phys. 67, p1535, (1990);CrossRefGoogle Scholar
Libatique, N., Sasakai, A., Choi, D., Wada, S., Rastogi, A.C., Kitama, M., Kaneko, K. and Takashima, M., J. Crystal Growth 127, p296 (1993).CrossRefGoogle Scholar
21. Libertino, S., Benton, J. L., Jacobson, D. C., Eaglesham, D. J., Poate, J. M., Coffa, S., Fuochi, P. G. and Lavalle, M., Appl. Phys. Lett. 70, p3002 (1997).10.1063/1.118770CrossRefGoogle Scholar
22. Vanhellemont, J. and Rodriguez, A. Romano, Appl. Phys. A 58, p541 (1994).10.1007/BF00348164CrossRefGoogle Scholar
23. Specimen Preparation for Transmission Electron Microscopy of Materials I - IV, published in the Mat. Res. Soc. Symp. Proc. series.Google Scholar
24. Brown, P. D., Loginov, Y. Y., Boothroyd, C. B. and Humphreys, C. J., Inst. Phys. Conf. Ser. No. 147, p393 (1995).Google Scholar
25. Walker, J. F., Reiner, J. C. and Solenthaler, C., Inst. Phys. Conf. Ser. No. 146, p629 (1995).Google Scholar
26. Walker, J. F. and Broom, R. F., Inst.Phys. Conf. Ser. No. 157, p473 (1997); H. Bender and P. Roussel, idem, p465.Google Scholar
27. Walker, J. F., Inst. Phys. Conf. Ser. No. 157, p469 (1997).Google Scholar
28. Liu, C. P., Brown, P. D., Boothroyd, C. B. and Humphreys, C. J., Inst. Phys. Conf. Ser. No. 157, p483 (1997).Google Scholar
29. Natusch, M. K. H., Botton, G. A., Broom, R. F., Brown, P. D., Tricker, D. M. and Humphreys, C. J., to be published in the Mat. Res. Soc. Symp. Proc. Vol. 482, (1998).Google Scholar
30. Schmid, G. and Lehnert, A., Angew. Chem. Int. Ed. Engl. 28, p780 (1989).CrossRefGoogle Scholar
31. Humphreys, C. J., Inst. Phys. Conf. Ser. No. 153, p31 (1997).Google Scholar
32. Ross, F. M. and Stobbs, W. M., Phil. Mag. A63, pl (1991); ibid, idem A63, p37 (1991).10.1080/01418619108204592CrossRefGoogle Scholar
33. Panin, G. N., Inst. Phys. Conf. Ser. No. 134, p743 (1993).Google Scholar
34. Schubert, E. F., Pfeiffer, L., West, K. W., Luftman, H. S. and Zydzik, G. J., Appl. Phys. Lett 64, p2238 (1994).CrossRefGoogle Scholar
35. Russell, G. J., Prog. Crystal Growth and Charact. 5, p291 (1982).10.1016/0146-3535(82)90003-XCrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electron Microscopy, Electrical Activity, Artefacts and the Assessment of Semiconductor Epitaxial Growth
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Electron Microscopy, Electrical Activity, Artefacts and the Assessment of Semiconductor Epitaxial Growth
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Electron Microscopy, Electrical Activity, Artefacts and the Assessment of Semiconductor Epitaxial Growth
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *