Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-30T00:32:56.947Z Has data issue: false hasContentIssue false

Electronic Structure and Energetics of LaNi5, α-La2Ni10H and β-La2Ni10H14

Published online by Cambridge University Press:  10 February 2011

H. Nakamura
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
D. Nguyen-Manh
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
D. G. Pettifor
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
Get access

Abstract

The electronic structure and energetics of LaNi5, its hydrogen solution (α-La2Ni10H) and its hydride (β-La2Ni10H14) were investigated by means of the tight-binding linear muffin-tin orbitals method within the atomic sphere approximation (TB-LMTO-ASA). Preferred site occupancy by the absorbed hydrogen atoms was investigated in terms of the charge density of the interstitial sites and the total energy, both of which indicate that the 6m site in the P6/mmm symmetry is the most preferred. A negative heat of formation of La2Ni10H14 was obtained from the total energy calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krier, G., Jepsen, O., Burkhart, A., Andersen, O. K., The TB-LMTO-ASA programme, Stuttgart, April (1995)Google Scholar
2. von Barth, U., Hedin, L., J. Phys., C5, 1629 (1972)Google Scholar
3. Langreth, D. C., Mehl, M. J., Phys. Rev., B28, 1809 (1983)Google Scholar
4. Hu, C. D., Langreth, D. C., Phys. Rev., B33, 943 (1986)Google Scholar
5. Jepsen, O., Andersen, O. K., Z. Phys., B97, 35 (1995)Google Scholar
6. Blochl, P., Andersen, O. K., Jepsen, O., Phys. Rev., B49, 16223 (1994)Google Scholar
7. Gunnarsson, O. (private communication). Only binding energy of the hydrogen molecule is given in Int. J. Quantum Chem., 10, 307 (1976)Google Scholar
8. Soubeyroux, J. L., Percheron-Guégan, A., Achard, J. C., J. Less-Common Met., 129, 181 (1987)Google Scholar
9. Fischer, P., Furrer, A., Busch, G., Schlapbach, L., Helv. Phys. Acta, 50, 421 (1977)Google Scholar
10. Lartigue, C., Bail, A. Le, Percheron-Guégan, A., J. Less-Common Met., 129, 65 (1987)Google Scholar
11. Percheron-Guégan, A., Lartigue, C., Achard, J.C., Germi, P., Tasset, F., J. Less-Common Met., 74, 1 (1980)Google Scholar
12. Furrer, A., Fischer, P., Hälg, W., Schlapbach, L., “Hydrides for energy storage” in Proc. of an Int. Symp., Norway, 1977, 73 (1978)Google Scholar
13. Puska, M. J., Nieminen, R. M., Manninen, M., Phys. Rev., B24, 3037 (1981)Google Scholar
14. Nørskov, J. K., Phys. Rev., B26, 2875 (1982)Google Scholar
15. Nørskov, J. K., Besenbacher, F., J. Less-Common Met., 130, 475 (1987)Google Scholar
16. Murray, J. J., Post, M. L., Taylor, J. B., J. Less-Common Met., 80, 211 (1981)Google Scholar
17. Gupta, M., J. Less-Common Met., 130, 219 (1987)Google Scholar
18. Bowerman, B. S., Wulff, C. A., Flanagan, T. B., Z. Phys. Chem., 116, 197 (1979)Google Scholar
19. Hubbard, W. N., Rawlins, P. L., Connick, P. A., Stedwell, R. E., O'Hare, P. A. G., J. Chem. Thermo., 13, 785 (1983)Google Scholar
20. Methfessel, M., Phys. Rev., B38, 1537 (1988)Google Scholar
21. Nguyen-Manh, D., Pasturel, A., Paxton, A. T., van Schilfgaarde, M., Phys. Rev., B48, 14801 (1993)Google Scholar
22. Neumann, A., Nguyen-Manh, D., Kjekshus, A., Sutton, A. P., Phys. Rev., B (to be published)Google Scholar