Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-05T18:08:02.007Z Has data issue: false hasContentIssue false

Influence of Momentary Annealing on the Nanoscale Surface Morphology of Room Temperature Pulsed Laser Deposited NiO(111) Epitaxial Thin Films on Atomically Stepped Sapphire (0001) Substrates

Published online by Cambridge University Press:  18 March 2013

Ryosuke Yamauchi
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Japan
Geng Tan
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Japan
Daishi Shiojiri
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Japan
Nobuo Tsuchimine
Affiliation:
Toshima Manufacturing Co., Ltd., Higashimatsuyama, Saitama 355-0036, Japan
Koji Koyama
Affiliation:
Namiki Precision Jewel Co., Ltd., Adachi, Tokyo 123-8511, Japan
Satoru Kaneko
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Japan Kanagawa Industrial Technology Center, Ebina, Kanagawa 243-0435, Japan
Akifumi Matsuda
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Japan
Mamoru Yoshimoto
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Japan
Get access

Abstract

We examined the influence of momentary annealing on the nanoscale surface morphology of NiO(111) epitaxial thin films deposited on atomically stepped sapphire (0001) substrates at room temperature in O2 at 1.3 × 10−3 and 1.3 × 10−6 Pa using a pulsed laser deposition (PLD) technique. The NiO films have atomically flat surfaces (RMS roughness: approximately 0.1–0.2 nm) reflecting the step-and-terrace structures of the substrates, regardless of the O2 deposition pressure. After rapid thermal annealing (RTA) of the NiO(111) epitaxial film deposited at 1.3 × 10−3 Pa O2, a periodic straight nanogroove array related to the atomic steps of the substrate was formed on the film surface for 60 s. In contrast, the fabrication of a transient state in the nanogroove array formation was achieved with RTA of less than 1 s. However, when the O2 atmosphere during PLD was 1.3 × 10−6 Pa, random crystal growth was observed and resulted in a disordered rough surface nanostructure after RTA.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Snowden, D. P. and Saltsburg, H., Phys. Rev. Lett. 14, 497 (1965).CrossRefGoogle Scholar
Terakura, K., Williams, A. R., Oguchi, T., and Kübler, J., Phys. Rev. Lett. 52, 1830 (1984).CrossRefGoogle Scholar
Nandy, S., Saha, B., Mitra, M. K., and Chattopadhyay, K. K., J. Mater. Sci. 42, 5766 (2007).CrossRefGoogle Scholar
Varghese, B., Reddy, M. V., Yanwu, Z., Lit, C. S., Hoong, T. C., Rao, G. V. S., Chowdari, B. V. R., Wee, A. T. S., Lim, C. T., and Sow, C. H., Chem. Mater. 20, 3360 (2008).CrossRefGoogle Scholar
Huang, Y., Huang, X. L., Lian, J. S., Xu, D., Wang, L. M., and Zhang, X. B., J. Mater. Chem. 22, 2844 (2012).CrossRefGoogle Scholar
Zhang, X. J., Shi, W. H., Zhu, J. X., Zhao, W. Y., Ma, J., Mhaisalkar, S., Maria, T. L., Yang, Y. H., Zhang, H., Hng, H. H., and Yan, Q. Y., Nano Res. 3, 643 (2010).CrossRefGoogle Scholar
Wang, G. P., Zhang, L., and Zhang, J. J., Chem. Soc. Rev. 41, 797 (2012).CrossRefGoogle Scholar
Chai, S. P., Zein, S. H. S., and Mohamed, A. R., Diamond Relat. Mater. 16, 1656 (2007).CrossRefGoogle Scholar
Zhou, Q. L., Gu, F., and Li, C.Z., J. Alloys Compd. 474, 358 (2009) .CrossRefGoogle Scholar
Seo, S., Lee, M. J., Seo, D. H., Jeoung, E. J., Suh, D. -S., Joung, Y. S., Yoo, I. K., Hwang, I. R., Kim, S. H., Byun, I. S., Kim, J. -S., Choi, J. S., and Park, B. H., Appl. Phys. Lett. 85, 5655 (2004).CrossRefGoogle Scholar
Ryu, S. W., Ahn, Y. B., Kim, H. J., and Nishi, Y., Appl. Phys. Lett. 100, 133502 (2012).CrossRefGoogle Scholar
Lu, H. L., Scarel, G., Alia, M., Fanciulli, M., Ding, S. J., and Zhang, D. W., Appl. Phys. Lett. 92, 222907 (2008).CrossRefGoogle Scholar
Ai, L., Fang, G. J., Yuan, L. G., Liu, N. S., Wang, M. J., Li, C., Zhang, Q. L., Li, J., and Zhao, X. Z., Appl. Surf. Sci. 254, 2401 (2008).CrossRefGoogle Scholar
Zhou, G. M., Wang, D. W., Yin, L. C., Li, N., Li, F., and Cheng, H. M., ACS Nano 6, 3214 (2012).CrossRefGoogle Scholar
Wu, H., Xu, M., Wu, H. Y., Xu, J. J., Wang, Y. L., Peng, Z., and Zheng, G. F., J. Mater. Chem. 22, 19821 (2012).CrossRefGoogle Scholar
Chen, D. P., Wang, X. L., Du, Y., Ni, S., Chen, Z. B., and Liao, X. Z., Cryst. Growth Des. 12, 2842 (2012).CrossRefGoogle Scholar
Yamauchi, R., Tan, G., Shiojiri, D., Koyama, K., Kaneko, S., Matsuda, A., and Yoshimoto, M., Jpn. J. Appl. Phys. 51, 06FF16 (2012).CrossRefGoogle Scholar
Akiba, S., Matsuda, A., Isa, H., Kasahara, M., Sato, S., Watanabe, T., Hara, W., and Yoshimoto, M., Nanotechnology 17, 4053 (2006).CrossRefGoogle Scholar
Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R., and Miyamoto, A., Appl. Phys. Lett. 67, 2615 (1995).CrossRefGoogle Scholar