Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-30T03:39:56.509Z Has data issue: false hasContentIssue false

NH4F Pre-Cleaning of Silicon (100) for UHV-CVD Epitaxy

Published online by Cambridge University Press:  25 February 2011

Susan L. Cohen
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Joseph Blum
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Christopher D'Emic
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Monica Gilbert
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Frank Cardone
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Carol Stanis
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Michael Liehr
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

NH4F etching of Si(100) surfaces has been evaluated as a pre-clean for UHV-CVD low temperature epitaxy of silicon. A combination of surface science and epitaxial growth experiments have found that while the NH4F treatment provides surfaces which have less carbon, oxygen and fluorine impurities than a standard dilute HF pre-clean, there is a significant density of crystallographic defects in the epitaxial films which limits the usefulness of this approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

1 Meyerson, B. S., Himpsel, F.J., and Uram, K.J., Appl. Phys. Lett. 57, 1034 (1990).CrossRefGoogle Scholar
2 Liehr, M., Greenlief, C.M., Kasi, S.R., and Offenberg, M., Appl. Phys. Lett. 56, 629 (1990).CrossRefGoogle Scholar
3 Dumas, P., Chabal, Y.J., and Higashi, G.S., Phys. Rev. Lett 65(9), 1124 (1990).CrossRefGoogle Scholar
4 Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K., Appl. Phys. Lett. 56(7), 656 (1990).CrossRefGoogle Scholar
5 Higashi, G.S., Becker, R.S., Chabal, Y.J., and Becker, A.J., Appl. Phys. Lett. 58(15), 1657 (1991).CrossRefGoogle Scholar
6 Dumas, P. and Chabal, Y.J., Chem. Phys. Lett. 181 (6), 537 (1991).CrossRefGoogle Scholar
7 Watanabe, S., Shigeno, M., Nakayama, N., and Ito, T., Extended Abstracts of 1991 Int'l Conf. on SSDM (Yokohama, 1991), p. 502.Google Scholar
8 Liehr, M., J. Vac. Sci. Technol. A 8, 1939 (1990).CrossRefGoogle Scholar
9 Kern, W.W. and Puotinen, D.D. A., RCA Rev. 31, 187 (1970).Google Scholar
10 Kasi, S.R. and Liehr, M., Appl. Phys. Lett. 57, 2095 (1990).CrossRefGoogle Scholar
11 Meyerson, B. S., Appl. Phys. Lett. 48, 797 (1986).CrossRefGoogle Scholar
12The signal to noise ratio is superior on the NH 4F treated surface due to the higher elastic peak intensity on this surface. This is related both to the cleanliness and smoothness of surface.Google Scholar
13 Graf, D., Grundner, M., and Schulz, R., J. Vac. Sci. Technol. A 7(3), 808 (1989).CrossRefGoogle Scholar
14 Haring, R. and Liehr, M., J. Vac. Sci. Technol. to be published, proceedings of 1991 Am. Vac. Soc. Meeting, (1991).Google Scholar
15 Li, Leping, Cohen, Susan, unpublished results.Google Scholar
16 Yota, J. and Burrows, V.A., J. Appl. Phys. 69(10), 7369 (1991).CrossRefGoogle Scholar
17 Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M., and Suma, K., Appl. Phys. Lett. 55, 562 (1989).CrossRefGoogle Scholar
18Results from Tejwani, M. and Wang, P.J. using optical microscopy.Google Scholar