Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T04:19:05.119Z Has data issue: false hasContentIssue false

Oligothiophene Organic Thin Film Transistors and Circuits

Published online by Cambridge University Press:  15 February 2011

Marcus Halik
Affiliation:
Polymer Materials and Technology, Infineon Technologies AG, Paul-Gossen-Str. 100, D-91052 Erlangen, Germany
Hagen Klauk
Affiliation:
Polymer Materials and Technology, Infineon Technologies AG, Paul-Gossen-Str. 100, D-91052 Erlangen, Germany
Ute Zschieschang
Affiliation:
Polymer Materials and Technology, Infineon Technologies AG, Paul-Gossen-Str. 100, D-91052 Erlangen, Germany
Gunter Schmid
Affiliation:
Polymer Materials and Technology, Infineon Technologies AG, Paul-Gossen-Str. 100, D-91052 Erlangen, Germany
Sergei A. Ponomarenko
Affiliation:
Research Electronic Chemicals, H.C. Starck, Bayerwerk G8, D-51368 Leverkusen, Germany
Stephan Kirchmeyer
Affiliation:
Research Electronic Chemicals, H.C. Starck, Bayerwerk G8, D-51368 Leverkusen, Germany
Get access

Abstract

We have investigated a series of α,α'-oligothiophenes with chromophore length ranging from four to six units, and with side chains comprised of ten, six, two, and zero alkyl units. We have fabricated top-contact and bottom-contact organic TFTs with thermally evaporated active layers and found that the TFT performance depends critically on the length of the side chains and on the contact configuration (with mobilities ranging from 0.07 to 1.1 cm2 / V-s), but is relatively insensitive to the chromophore length. We have also fabricated ring oscillators with didecylsexithiophene and measured a signal propagation delay of 30 μsec per stage. In addition, we have fabricated oligothiophene-TFTs with ultra-thin self-assembled monolayer (SAM) gate dielectrics, with the intent to evaluate if long alkyl side chains contribute usefully to the effective thickness of a SAM gate dielectric. We have measured carrier mobilities as large as 0.05 cm2 / V-s and subthreshold swing as low as 200 mV / decade.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gelinck, G. H., Geuns, T. C. T., Leeuw, D. M. de, Appl. Phys. Lett. 2000, 77, 14871489 Google Scholar
2. Sheraw, C. D., et al., Appl. Phys. Lett., 80, 1088 (2002)Google Scholar
3. Crone, B., et al., J. Appl. Phys., 91, 10140 (2002)Google Scholar
4. Gundlach, D. J., Lin, Y. Y., Jackson, T. N., Nelson, S. F., Schlom, D. G., IEEE Electr. Dev. Lett., 18, 87 (1997)Google Scholar
5. Madru, M., et al., Chem. Phys. Lett., 142, 103 (1987)Google Scholar
6. Horowitz, G., Fichou, D., Peng, X., Xu, Z., and Garnier, F., Solid State Comm., 72, 381 (1989)Google Scholar
7. Garnier, F., Horowitz, G., Peng, X. Z., and Fichou, D., Synth. Metals, 45, 163 (1991)Google Scholar
8. Horowitz, G. and Hajlaoui, M. E., Adv. Mater.,12, 1046 (2000)Google Scholar
9. Garnier, F., et al.,J. Am. Chem. Soc., 115, 8716 (1993)Google Scholar
10. Dimitrakopoulos, C. D., et al., Synth. Metals, 92, 47 (1998)Google Scholar
11. Crone, B. K., et al., J. Appl. Phys., 89, 5125 (2001)Google Scholar
12. Collet, J., Tharaud, O., Chapoton, A., Vuillaume, D., Appl. Phys. Lett. 76, 1941 (2000)Google Scholar
13. Ponomarenko, S. and Kirchmeyer, S., J. Mater. Chem., 13, 197 (2002)Google Scholar
14. Halik, M., et al., J. Appl. Phys., 93, XXXX (2003)Google Scholar
15. Klauk, H., et al., Solid-State Electronics, 47, 297 (2003)Google Scholar
16. Fontaine, P., et al., Appl. Phys. Lett. 62, 2256 (1993)Google Scholar